974 research outputs found

    Field Effect Transistor Nanosensor for Breast Cancer Diagnostics

    Full text link
    Silicon nanochannel field effect transistor (FET) biosensors are one of the most promising technologies in the development of highly sensitive and label-free analyte detection for cancer diagnostics. With their exceptional electrical properties and small dimensions, silicon nanochannels are ideally suited for extraordinarily high sensitivity. In fact, the high surface-to-volume ratios of these systems make single molecule detection possible. Further, FET biosensors offer the benefits of high speed, low cost, and high yield manufacturing, without sacrificing the sensitivity typical for traditional optical methods in diagnostics. Top down manufacturing methods leverage advantages in Complementary Metal Oxide Semiconductor (CMOS) technologies, making richly multiplexed sensor arrays a reality. Here, we discuss the fabrication and use of silicon nanochannel FET devices as biosensors for breast cancer diagnosis and monitoring

    An Integrated ISFET Sensor Array

    Get PDF
    A monolithically integrated ISFET sensor array and interface circuit are described. A new high-density, low-power source-drain follower was developed for the sensor array. ISFETs were formed by depositing Au/Ti extended-gate electrodes on standard MOSFETs, then thin silicon nitride layers using catalytic chemical vapor deposition and/or SU-8 protective layers were formed on the extended-gate electrodes. Applications for the array include: (1) pH detection by statistical distribution observing time and space fluctuations; (2) DNA detection using thiol-modified or silane-coupled oligonucleotides; (3) bio-image sensing by converting photons to electrons using Photosystem I of Thermosynechococcus elongatus, and sensing the converted electric charges by ISFETs

    Microfabricated electrochemical systems

    Get PDF

    Towards Single-Chip Nano-Systems

    Get PDF
    Important scientific discoveries are being propelled by the advent of nano-scale sensors that capture weak signals from their environment and pass them to complex instrumentation interface circuits for signal detection and processing. The highlight of this research is to investigate fabrication technologies to integrate such precision equipment with nano-sensors on a single complementary metal oxide semiconductor (CMOS) chip. In this context, several demonstration vehicles are proposed. First, an integration technology suitable for a fully integrated flexible microelectrode array has been proposed. A microelectrode array containing a single temperature sensor has been characterized and the versatility under dry/wet, and relaxed/strained conditions has been verified. On-chip instrumentation amplifier has been utilized to improve the temperature sensitivity of the device. While the flexibility of the array has been confirmed by laminating it on a fixed single cell, future experiments are necessary to confirm application of this device for live cell and tissue measurements. The proposed array can potentially attach itself to the pulsating surface of a single living cell or a network of cells to detect their vital signs

    Field-effect based chemical and biological sensing : theory and implementation

    Get PDF
    Electrochemical sensors share many properties of an ideal (bio)chemical sensor. They can be easily miniaturized with high parallel sensing capabilities,with rugged structure and at low cost. The response obtained from thetarget analyte is directly in electrical form allowing convenient data post-processing and simple interfacing to standard electrical components. With field-effect transistor (FET) based sensors, the transducing principle relies on direct detection of interfacial charge allowing detection of various ions and charged macromolecules. This thesis investigates FET based sensors for biological and chemical sensing. First, an ion-sensitive floating gate FET (ISFGFET) structure is studied and modeled. The proposed model reveals novel abilities of the structure not found in conventional ion-sensitive FETs (ISFETs). With IS-FGFET, we can simultaneously optimize the transistor operating point and modulate the charging of the surface and the ionic screening layer via the field effect. This control is predicted to allow reduced electric double layer screening as well as the possibility to enhance charged molecule attachment to the sensing surface. The model can predict sensor characteristic curves in pH sensing in absolute terms and allows any potential to be computed in the sensor including the electrical part and the electrolyte solution. Furthermore, a compact ISFGFET variant is merged into electric circuit simulator, which allows it to be simulated as a standard electrical component with electrical simulations tools of high computational efficiency, and allows simple modifications such as addition of parasitic elements, temperature effects, or even temporal drifts. Next, another transistor based configuration, the extended-gate ISFET is studied. The simplicity of the proposed configuration allows a universal potentiometric approach where a wide variety of chemical and biological sensors can be constructed. The design philosophy for this sensing structure is to use the shelf electric components and standard electric manufacturing processes. Such an extended-gate structure is beneficial since the dry electronics can be completely separated from the wet sensing environment. The extended-gate allows simple functionalization towards chemical and biological sensing. A proof-of-concept of this structure was verified through organo modified gold platforms with ion-selective membranes. A comparison with standard open-circuit potentiometry reveals that the sensing elements in a disposable sensing platform arrays provide comparable performance to traditional electrodes. Finally, a universal battery operated hand-held electrical readout device is designed for multiplexed detection of the disposable sensors with wireless smartphone data plotting, control, and storage. Organic polymers play an important role in the interfacial properties of sensors studied in this thesis. The polymer coating is attractive in chemical sensing because of its redox sensitivity, bio-immobilization capability, ion-to-electron transducing capability, and applicability, for example via a simple low-cost drop-casting. This structure simplifies the design of the sensor substantially and the coating increases the amount of possible target applications.Siirretty Doriast

    The potential of microelectrode arrays and microelectronics for biomedical research and diagnostics

    Get PDF
    Planar microelectrode arrays (MEAs) are devices that can be used in biomedical and basic in vitro research to provide extracellular electrophysiological information about biological systems at high spatial and temporal resolution. Complementary metal oxide semiconductor (CMOS) is a technology with which MEAs can be produced on a microscale featuring high spatial resolution and excellent signal-to-noise characteristics. CMOS MEAs are specialized for the analysis of complete electrogenic cellular networks at the cellular or subcellular level in dissociated cultures, organotypic cultures, and acute tissue slices; they can also function as biosensors to detect biochemical events. Models of disease or the response of cellular networks to pharmacological compounds can be studied in vitro, allowing one to investigate pathologies, such as cardiac arrhythmias, memory impairment due to Alzheimer's disease, or vision impairment caused by ganglion cell degeneration in the retin

    State-of-the-Art of (Bio)Chemical Sensor Developments in Analytical Spanish Groups

    Get PDF
    (Bio)chemical sensors are one of the most exciting fields in analytical chemistry today. The development of these analytical devices simplifies and miniaturizes the whole analytical process. Although the initial expectation of the massive incorporation of sensors in routine analytical work has been truncated to some extent, in many other cases analytical methods based on sensor technology have solved important analytical problems. Many research groups are working in this field world-wide, reporting interesting results so far. Modestly, Spanish researchers have contributed to these recent developments. In this review, we summarize the more representative achievements carried out for these groups. They cover a wide variety of sensors, including optical, electrochemical, piezoelectric or electro-mechanical devices, used for laboratory or field analyses. The capabilities to be used in different applied areas are also critically discussed

    MME2010 21st Micromechanics and Micro systems Europe Workshop : Abstracts

    Get PDF
    corecore