7,926 research outputs found

    A fruitful fly forward : the role of the fly in drug discovery for neurodegeneration

    Get PDF
    AD, Alzheimer’s disease; APP, amyloid precursor protein; BBB, blood brain barrier; GFP, green fluorescent protein; HTS, high-throughput screening; HD, Huntington’s disease; LB, Lewy bodies; PD, Parkinson’s disease; PolyQ, Polyglutamine; RNAi, RNA interference; SNCA, α-synuclein gene; UAS, Upstream Activating Sequence.peer-reviewe

    Contribution to drug discovery and development for tauopathies using yeast as a model

    Get PDF
    This work aimed to contribute to drug discovery and development (DDD) for tauopathies, while expanding our knowledge on this group of neurodegenerative disorders, including Alzheimer’s disease (AD). Using yeast, a recognized model for neurodegeneration studies, useful models were produced for the study of tau interaction with beta-amyloid (Aβ), both AD hallmark proteins. The characterization of these models suggests that these proteins co-localize and that Aβ1-42, which is toxic to yeast, is involved in tau40 phosphorylation (Ser396/404) via the GSK-3β yeast orthologue, whereas tau seems to facilitate Aβ1-42 oligomerization. The mapping of tau’s interactome in yeast, achieved with a tau toxicity enhancer screen using the yeast deletion collection, provided a novel framework, composed of 31 genes, to identify new mechanisms associated with tau pathology, as well as to identify new drug targets or biomarkers. This genomic screen also allowed to select the yeast strain mir1Δ-tau40 for development of a new GPSD2TM drug discovery screening system. A library of unique 138 marine bacteria extracts, obtained from the Mid-Atlantic Ridge hydrothermal vents, was screened with mir1Δ-tau40. Three extracts were identified as suppressors of tau toxicity and constitute good starting points for DDD programs. mir1Δ strain was sensitive to tau toxicity, relating tau pathology with mitochondrial function. SLC25A3, the human homologue of MIR1, codes for the mitochondrial phosphate carrier protein (PiC). Resorting to iRNA, SLC25A3 expression was silenced in human neuroglioma cells, as a first step towards the engineering of a neural model for replicating the results obtained in yeast. This model is essential to understand the mechanisms of tau toxicity at the mitochondrial level and to validate PiC as a relevant drug target. The set of DDD tools here presented will foster the development of innovative and efficacious therapies, urgently needed to cope with tau-related disorders of high human and social-economic impact

    A rapid absorbance-based growth assay to screen the toxicity of oligomer Aβ42 and protect against cell death in yeast

    Get PDF
    Multiple lines of evidence show that soluble oligomer forms of amyloid β protein (Aβ42) are the most neurotoxic species in the brain and correlates with the degree of neuronal loss and cognitive deficit in Alzheimer\u27s disease. Although many studies have used mammalian cells to investigate oligomer Aβ42 toxicity, the use of more simple eukaryotic cellular systems offers advantages for large-scale screening studies. We have previously established and validated budding yeast, Saccharomyces cerevisiae to be a simple and a robust model to study the toxicity of Aβ. Using colony counting based methods, oligomeric Aβ42 was shown to induce dose-dependent cell death in yeast. We have adapted this method for high throughput screening by developing an absorbance-based growth assay. We further validated the assay with treatments previously shown to protect oligomer Aβ42 induced cell death in mammalian and yeast cells. This assay offers a platform for studying underlying mechanisms of oligomer Aβ42 induced cell death using gene deletion/overexpression libraries and developing novel agents that alleviate Aβ42 induced cell death. © 2020 Neural Regeneration Research. All rights reserved

    Bioprospection of Natural Sources of Polyphenols with Therapeutic Potential for Redox-Related Diseases

    Get PDF
    Funding: iNOVA4Health-UID/Multi/04462/2013, a program financially supported by Fundação para a Ciência e Tecnologia/Ministério da Educação e Ciência, through national funds and co-funded by FEDER under the PT2020 Partnership Agreement is acknowledged. This work was supported by Fundação para a Ciência e Tecnologia (IF/01097/2013 to C.N.S.), by The Scottish Government Rural and Environment Science and Analytical Services Division (A.F. and D.S.), and BacHBerry FP7-KBBE-2013-613793 (R.M., A.F., C.J., I.C., G.G., R.R.-R., J.P., A.M., C.D., D.S. and C.N.S.). T.F.O. was supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) Center for Nanoscale Microscopy and Molecular Physiology of the Brain (CNMPB), and is currently supported by the DFG under Germany’s Excellence Strategy—EXC 2067/1-390729940.Plants are a reservoir of high-value molecules with underexplored biomedical applications. With the aim of identifying novel health-promoting attributes in underexplored natural sources, we scrutinized the diversity of (poly)phenols present within the berries of selected germplasm from cultivated, wild, and underutilized Rubus species. Our strategy combined the application of metabolomics, statistical analysis, and evaluation of (poly)phenols' bioactivity using a yeast-based discovery platform. We identified species as sources of (poly)phenols interfering with pathological processes associated with redox-related diseases, particularly, amyotrophic lateral sclerosis, cancer, and inflammation. In silico prediction of putative bioactives suggested cyanidin-hexoside as an anti-inflammatory molecule which was validated in yeast and mammalian cells. Moreover, cellular assays revealed that the cyanidin moiety was responsible for the anti-inflammatory properties of cyanidin-hexoside. Our findings unveiled novel (poly)phenolic bioactivities and illustrated the power of our integrative approach for the identification of dietary (poly)phenols with potential biomedical applications.publishersversionpublishe

    Protective activity of phytochemicals from natural extracts

    Get PDF
    The rise in the incidence of neurodegenerative diseases leads to an increased demand for the development of alternative therapeutic strategies. Phytochemicals have proved beneficial effects for human health, exerting protective roles towards several diseases including neurodegenerative disorders. Thus, the search for new bioactivities is a field in constant growth. The beet and fruits belonging to Opuntia spp. are rich in betalains and phenolic compounds, which confer several benefits to human health such as regulators of antioxidant and anti-inflammatory responses as well as potential protective effect for chronic diseases.info:eu-repo/semantics/publishedVersio

    CRISPR-Cas9 screens in human cells and primary neurons identify modifiers of C9ORF72 dipeptide-repeat-protein toxicity.

    Get PDF
    Hexanucleotide-repeat expansions in the C9ORF72 gene are the most common cause of amyotrophic lateral sclerosis and frontotemporal dementia (c9ALS/FTD). The nucleotide-repeat expansions are translated into dipeptide-repeat (DPR) proteins, which are aggregation prone and may contribute to neurodegeneration. We used the CRISPR-Cas9 system to perform genome-wide gene-knockout screens for suppressors and enhancers of C9ORF72 DPR toxicity in human cells. We validated hits by performing secondary CRISPR-Cas9 screens in primary mouse neurons. We uncovered potent modifiers of DPR toxicity whose gene products function in nucleocytoplasmic transport, the endoplasmic reticulum (ER), proteasome, RNA-processing pathways, and chromatin modification. One modifier, TMX2, modulated the ER-stress signature elicited by C9ORF72 DPRs in neurons and improved survival of human induced motor neurons from patients with C9ORF72 ALS. Together, our results demonstrate the promise of CRISPR-Cas9 screens in defining mechanisms of neurodegenerative diseases

    Alteration of sphingolipids in biofluids: Implications for neurodegenerative Diseases

    Get PDF
    Sphingolipids (SL) modulate several cellular processes including cell death, proliferation and autophagy. The conversion of sphingomyelin (SM) to ceramide and the balance between ceramide and sphingosine-1-phosphate (S1P), also known as the SL rheostat, have been associated with oxidative stress and neurodegeneration. Research in the last decade has focused on the possibility of targeting the SL metabolism as a therapeutic option; and SL levels in biofluids, including serum, plasma, and cerebrospinal fluid (CSF), have been measured in several neurodegenerative diseases with the aim of finding a diagnostic or prognostic marker. Previous reviews focused on results from diseases such as Alzheimer’s Disease (AD), evaluated total SL or species levels in human biofluids, post-mortem tissues and/or animal models. However, a comprehensive review of SL alterations comparing results from several neurodegenerative diseases is lacking. The present work compiles data from circulating sphingolipidomic studies and attempts to elucidate a possible connection between certain SL species and neurodegeneration processes. Furthermore, the effects of ceramide species according to their acyl-chain length in cellular pathways such as apoptosis and proliferation are discussed in order to understand the impact of the level alteration in specific species. Finally, enzymatic regulations and the possible influence of insulin resistance in the level alteration of SL are evaluated.Fil: Pujol Lereis, Luciana Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas. Universidad Católica de Córdoba. Centro de Investigación y Desarrollo en Inmunología y Enfermedades Infecciosas; Argentin

    ALS Yeast Models-Past Success Stories and New Opportunities

    Get PDF
    In the past two decades, yeast models have delivered profound insights into basic mechanisms of protein misfolding and the dysfunction of key cellular pathways associated with amyotrophic lateral sclerosis (ALS). Expressing ALS-associated proteins, such as superoxide dismutase (SOD1), TAR DNA binding protein 43 (TDP-43) and Fused in sarcoma (FUS), in yeast recapitulates major hallmarks of ALS pathology, including protein aggregation, mislocalization and cellular toxicity. Results from yeast have consistently been recapitulated in other model systems and even specimens from human patients, thus providing evidence for the power and validity of ALS yeast models. Focusing on impaired ribonucleic acid (RNA) metabolism and protein misfolding and their cytotoxic consequences in ALS, we summarize exemplary discoveries that originated from work in yeast. We also propose previously unexplored experimental strategies to modernize ALS yeast models, which will help to decipher the basic pathomechanisms underlying ALS and thus, possibly contribute to finding a cure

    Autophagy, physiology and cell pathology

    Get PDF
    Autophagy plays an important role in human pathologies, such as myopathies and neurodegenerative diseases. Moreover, metabolic disease processes such as diabetes and pancreatitis, as well as tumor cells and cancer chemotherapy, activate autophagy. Furthermore, a selective type of autophagy of pancreatic zymogen granules has been discovered and characterized as a protective cellular process triggered by acute pancreatitis. In this review we describe the physiological bases and molecular mechanisms in the autophagic process and the possible role of autophagy in human disease. Understanding the events and molecular mechanisms of this complex cellular process will help in the design of new strategies for more effective diagnosis and treatment.Fil: Vaccaro, Maria Ines. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay. Instituto de Bioquímica y Medicina Molecular; Argentin
    corecore