595 research outputs found

    Prioritizing Content of Interest in Multimedia Data Compression

    Get PDF
    Image and video compression techniques make data transmission and storage in digital multimedia systems more efficient and feasible for the system's limited storage and bandwidth. Many generic image and video compression techniques such as JPEG and H.264/AVC have been standardized and are now widely adopted. Despite their great success, we observe that these standard compression techniques are not the best solution for data compression in special types of multimedia systems such as microscopy videos and low-power wireless broadcast systems. In these application-specific systems where the content of interest in the multimedia data is known and well-defined, we should re-think the design of a data compression pipeline. We hypothesize that by identifying and prioritizing multimedia data's content of interest, new compression methods can be invented that are far more effective than standard techniques. In this dissertation, a set of new data compression methods based on the idea of prioritizing the content of interest has been proposed for three different kinds of multimedia systems. I will show that the key to designing efficient compression techniques in these three cases is to prioritize the content of interest in the data. The definition of the content of interest of multimedia data depends on the application. First, I show that for microscopy videos, the content of interest is defined as the spatial regions in the video frame with pixels that don't only contain noise. Keeping data in those regions with high quality and throwing out other information yields to a novel microscopy video compression technique. Second, I show that for a Bluetooth low energy beacon based system, practical multimedia data storage and transmission is possible by prioritizing content of interest. I designed custom image compression techniques that preserve edges in a binary image, or foreground regions of a color image of indoor or outdoor objects. Last, I present a new indoor Bluetooth low energy beacon based augmented reality system that integrates a 3D moving object compression method that prioritizes the content of interest.Doctor of Philosoph

    Understanding collaborative workspaces:spatial affordances & time constraints

    Get PDF
    Abstract. This thesis presents a generic solution for indoor positioning and movement monitoring, positioning data collection and analysis with the aim of improving the interior design of collaborative workspaces. Since the nature of the work and the work attitude of employees varies in different workspaces, no general workspace layout can be applied to all situations. Tailoring workspaces according to the exact needs and requirements of the employees can improve collaboration and productivity. Here, an indoor positioning system based on Bluetooth Low Energy technology was designed and implemented in a pilot area (an IT company), and the position of the employees was monitored during a two months period. The pilot area consisted of an open workplace with workstations for nine employees and two sets of coffee tables, four meeting rooms, two coffee rooms and a soundproof phone booth. Thirteen remixes (BLE signal receivers) provided full coverage over the pilot area, while light durable BLE beacons, which were carried by employees acted as BLE signal broadcasters. The RSSIs of the broadcasted signals from the beacons were recorded by each remix within the range of the signal and the gathered data was stored in a database. The gathered RSSI data was normalized to decrease the effect of workspace obstacles on the signal strength. To predict the position of beacons based on the recorded RSSIs, a few approaches were tested, and the most accurate one was chosen, which provided an above 95% accuracy in predicting the position of each beacon every 3 minutes. This approach was a combination of fingerprinting with a Machine Learning-based Random Forest Classifier. The obtained position results were then used to extract various information about the usage pattern of different workspace areas to accurately access the current layout and the needs of the employees

    A review of smartphones based indoor positioning: challenges and applications

    Get PDF
    The continual proliferation of mobile devices has encouraged much effort in using the smartphones for indoor positioning. This article is dedicated to review the most recent and interesting smartphones based indoor navigation systems, ranging from electromagnetic to inertia to visible light ones, with an emphasis on their unique challenges and potential real-world applications. A taxonomy of smartphones sensors will be introduced, which serves as the basis to categorise different positioning systems for reviewing. A set of criteria to be used for the evaluation purpose will be devised. For each sensor category, the most recent, interesting and practical systems will be examined, with detailed discussion on the open research questions for the academics, and the practicality for the potential clients

    Signaali tugevusel põhinev esemete otsimise süsteem

    Get PDF
    In this thesis, work regarding to development a system that would help finding lost objects based on RSSI is presented. The thesis gives a basic overview of the theory behind RF modulation, antennas and PCB design. Based on the presented theory, the technology and system parameters are chosen to design and ultimately complete the system. To improve the performace of the system the RF parts of the circuits are optimized using a vector network analyzer. As a result of this thesis a periodically transmitting battery-powered beacon that works at 433.92MHz is designed and completed. To read the transmitted data and the signal strength a receiver is also designed and completed to receive the data transmitted by the beacon and display the RSSI on a smart-phone screen using the micro-USB port

    Indoor self-localization via bluetooth low energy beacons

    Get PDF
    Indoor localization is concerned with mapping sensory data to physical locations inside buildings. Location of a user or a mobile device is an essential part of the context, and is therefore very useful for pervasive computing applications. Many proposals exist for solving the localization problem, typically based on image or radio signal processing, though the problem is still generally considered to be open, especially when costs and privacy constraints play an important role. In this paper, we propose a solution based on the emerging Bluetooth Low Energy (BLE) standard and off-the-shelf hardware. Such approach proves to satisfy economic constraints, while challenging in terms of accurate location. To translate beacon signals into locations, we consider several approaches, i.e., cosine similarity, nearest neighbourhood classification, and the nearest beacon. Our experiments indicate a vector based approach as the most suited one. In fact, we show its effectiveness in an actual office deployment consisting of five indoor areas: three multiuser offices, a social corner, and a hallway. We achieve 90% and 80% for accuracy and F-measure, respectively
    corecore