56,811 research outputs found

    From Trees to Loops and Back

    Full text link
    We argue that generic one-loop scattering amplitudes in supersymmetric Yang-Mills theories can be computed equivalently with MHV diagrams or with Feynman diagrams. We first present a general proof of the covariance of one-loop non-MHV amplitudes obtained from MHV diagrams. This proof relies only on the local character in Minkowski space of MHV vertices and on an application of the Feynman Tree Theorem. We then show that the discontinuities of one-loop scattering amplitudes computed with MHV diagrams are precisely the same as those computed with standard methods. Furthermore, we analyse collinear limits and soft limits of generic non-MHV amplitudes in supersymmetric Yang-Mills theories with one-loop MHV diagrams. In particular, we find a simple explicit derivation of the universal one-loop splitting functions in supersymmetric Yang-Mills theories to all orders in the dimensional regularisation parameter, which is in complete agreement with known results. Finally, we present concrete and illustrative applications of Feynman's Tree Theorem to one-loop MHV diagrams as well as to one-loop Feynman diagrams.Comment: 52 pages, 17 figures. Some typos in Appendix A correcte

    Generalized string theory mapping relations between gravity and gauge theory

    Full text link
    A previous study of the Kawai, Lewellen and Tye (KLT) relations between gravity and gauge theories, imposed by the relationship of closed and open strings, are here extended in the light of general relativity and Yang-Mills theory as effective field theories. We discuss the possibility of generalizing the traditional KLT mapping in this effective setting. A generalized mapping between the effective Lagrangians of gravity and Yang-Mills theory is presented, and the corresponding operator relations between gauge and gravity theories at the tree level are further explored. From this generalized mapping remarkable diagrammatic relations are found, -- linking diagrams in gravity and Yang-Mills theory, -- as well as diagrams in pure effective Yang-Mills theory. Also the possibility of a gravitational coupling to an antisymmetric field in the gravity scattering amplitude is considered, and shown to allow for mixed open-closed string solutions, i.e., closed heterotic strings.Comment: 10 pages, 7 figures, format ReVTeX, comments and ref. added, typos correcte

    One-Loop Gauge Theory Amplitudes in N=4 Super Yang-Mills from MHV Vertices

    Full text link
    We propose a new, twistor string theory inspired formalism to calculate loop amplitudes in N=4 super Yang-Mills theory. In this approach, maximal helicity violating (MHV) tree amplitudes of N=4 super Yang-Mills are used as vertices, using an off-shell prescription introduced by Cachazo, Svrcek and Witten, and combined into effective diagrams that incorporate large numbers of conventional Feynman diagrams. As an example, we apply this formalism to the particular class of MHV one-loop scattering amplitudes with an arbitrary number of external legs in N=4 super Yang-Mills. Remarkably, our approach naturally leads to a representation of the amplitudes as dispersion integrals, which we evaluate exactly. This yields a new, simplified form for the MHV amplitudes, which is equivalent to the expressions obtained previously by Bern, Dixon, Dunbar and Kosower using the cut-constructibility approach.Comment: Latex, 35 pages, 3 figures. v2: remarks on gauge invariance added. Published version to appear in Nuclear Physics

    Parity Invariance For Strings In Twistor Space

    Full text link
    Topological string theory with twistor space as the target makes visible some otherwise difficult to see properties of perturbative Yang-Mills theory. But left-right symmetry, which is obvious in the standard formalism, is highly unclear from this point of view. Here we prove that tree diagrams computed from connected DD-instanton configurations are parity-symmetric. The main point in the proof also works for loop diagrams.Comment: 18 p

    Diagrammatic proof of the BCFW recursion relation for gluon amplitudes in QCD

    Get PDF
    We present a proof of the Britto-Cachazo-Feng-Witten tree-level recursion relation for gluon amplitudes in QCD, based on a direct equivalence between BCFW decompositions and Feynman diagrams. We demonstrate that this equivalence can be made explicit when working in a convenient gauge. We exhibit that gauge invariance and the particular structure of Yang-Mills vertices guarantees the validity of the BCFW construction.Comment: 24 pages, 33 figure

    Towards Field Theory Amplitudes From the Cohomology of Pure Spinor Superspace

    Full text link
    A simple BRST-closed expression for the color-ordered super-Yang-Mills 5-point amplitude at tree-level is proposed in pure spinor superspace and shown to be BRST-equivalent to the field theory limit of the open superstring 5-pt amplitude. It is manifestly cyclic invariant and each one of its five terms can be associated to the five Feynman diagrams which use only cubic vertices. Its form also suggests an empirical method to find superspace expressions in the cohomology of the pure spinor BRST operator for higher-point amplitudes based on their kinematic pole structure. Using this method, Ansaetze for the 6- and 7-point 10D super-Yang-Mills amplitudes which map to their 14 and 42 color-ordered diagrams are conjectured and their 6- and 7-gluon expansions are explicitly computed.Comment: 14 pages, harvmac, v4: trivial edits in the text to comply with JHEP refere

    The Kinematic Algebra From the Self-Dual Sector

    Full text link
    We identify a diffeomorphism Lie algebra in the self-dual sector of Yang-Mills theory, and show that it determines the kinematic numerators of tree-level MHV amplitudes in the full theory. These amplitudes can be computed off-shell from Feynman diagrams with only cubic vertices, which are dressed with the structure constants of both the Yang-Mills colour algebra and the diffeomorphism algebra. Therefore, the latter algebra is the dual of the colour algebra, in the sense suggested by the work of Bern, Carrasco and Johansson. We further study perturbative gravity, both in the self-dual and in the MHV sectors, finding that the kinematic numerators of the theory are the BCJ squares of the Yang-Mills numerators.Comment: 29 pages, 5 figures. v2: references added, published versio
    • …
    corecore