53 research outputs found

    Pathfinder: XQuery - The Relational Way

    Get PDF
    Relational query processors are probably the best understood (as well as the best engineered) query engines available today. Although carefully tuned to process instances of the relational model (tables of tuples), these processors can also provide a foundation for the evaluation of "alien" (non-relational) query languages: if a relational encoding of the alien data model and its associated query language is given, the RDBMS may act like a special-purpose processor for the new language

    Relational Approach to Logical Query Optimization of XPath

    Get PDF
    To be able to handle the ever growing volumes of XML documents, effective and efficient data management solutions are needed. Managing XML data in a relational DBMS has great potential. Recently, effective relational storage schemes and index structures have been proposed as well as special-purpose join operators to speed up querying of XML data using XPath/XQuery. In this paper, we address the topic of query plan construction and logical query optimization. The claim of this paper is that standard relational algebra extended with special-purpose join operators suffices for logical query optimization. We focus on the XPath accelerator storage scheme and associated staircase join operators, but the approach can be generalized easily

    The relational XQuery puzzle: a look-back on the pieces found so far

    Get PDF
    Given the tremendous versatility of relational database implementations toward awide range of database problems, it seems only natural to consider them as back-ends for XML data processing. Yet, the assumptions behind the language XQuery are considerably different to those in traditional RDBMSs. The underlying data model is a tree, data and results carry an intrinsic order, queries are described using explicit iteration and, after all, problems are everything else but regular. Solving the relational XQuery puzzle, therefore, has challenged anumber of research groups over the past years. The purpose of this article is to summarize and assess some of the results that have been obtained during this period to solve the puzzle. Our main focus is on the Pathfinder XQuery compiler, afull reference implementation of apurely relational XQuery processor. As we dissect its components, we relate them to other work in the field and also point to open problems and limitations in the context of relational XQuery processin

    Migrating relational databases into object-based and XML databases

    Get PDF
    Rapid changes in information technology, the emergence of object-based and WWW applications, and the interest of organisations in securing benefits from new technologies have made information systems re-engineering in general and database migration in particular an active research area. In order to improve the functionality and performance of existing systems, the re-engineering process requires identifying and understanding all of the components of such systems. An underlying database is one of the most important component of information systems. A considerable body of data is stored in relational databases (RDBs), yet they have limitations to support complex structures and user-defined data types provided by relatively recent databases such as object-based and XML databases. Instead of throwing away the large amount of data stored in RDBs, it is more appropriate to enrich and convert such data to be used by new systems. Most researchers into the migration of RDBs into object-based/XML databases have concentrated on schema translation, accessing and publishing RDB data using newer technology, while few have paid attention to the conversion of data, and the preservation of data semantics, e.g., inheritance and integrity constraints. In addition, existing work does not appear to provide a solution for more than one target database. Thus, research on the migration of RDBs is not fully developed. We propose a solution that offers automatic migration of an RDB as a source into the recent database technologies as targets based on available standards such as ODMG 3.0, SQL4 and XML Schema. A canonical data model (CDM) is proposed to bridge the semantic gap between an RDB and the target databases. The CDM preserves and enhances the metadata of existing RDBs to fit in with the essential characteristics of the target databases. The adoption of standards is essential for increased portability, flexibility and constraints preservation. This thesis contributes a solution for migrating RDBs into object-based and XML databases. The solution takes an existing RDB as input, enriches its metadata representation with the required explicit semantics, and constructs an enhanced relational schema representation (RSR). Based on the RSR, a CDM is generated which is enriched with the RDB's constraints and data semantics that may not have been explicitly expressed in the RDB metadata. The CDM so obtained facilitates both schema translation and data conversion. We design sets of rules for translating the CDM into each of the three target schemas, and provide algorithms for converting RDB data into the target formats based on the CDM. A prototype of the solution has been implemented, which generates the three target databases. Experimental study has been conducted to evaluate the prototype. The experimental results show that the target schemas resulting from the prototype and those generated by existing manual mapping techniques were comparable. We have also shown that the source and target databases were equivalent, and demonstrated that the solution, conceptually and practically, is feasible, efficient and correct

    Scalable XQuery type matching

    Get PDF
    XML Schema awareness has been an integral part of the XQuery language since its early design stages. Matching XML data against XML types is the main operation that backs up XQuery type expressions, such as typeswitch, instance of, or certain XPath operators. This interaction is particularly vital in data-centric XQuery applications, where data come with detailed type information from an XML Schema document. So far there has been little work on the optimization of those operations. This work presents an efficient implementation of the runtime aspects of XML Schema support. We propose type ranks as a novel and uniform way to implement all facets of type matching in the W3C XQuery Recommendation. As a concise encoding of the type hierarchy defined by an XML Schema document, type ranks minimize the cost of checking the runtime type of XQuery singleton items. By aggregating type ranks, we leverage the grouping capabilities of modern DBMS implementations to efficiently execute type matching on XQuery sequences. In addition, we improve the complexity bounds incurring with typeswitch expressions over existing approaches. Experiments on an off-the-shelf database system demonstrate the potential of our approach

    REALIZATION OF A SYSTEM OF EFFICIENT QUERYING OF HIERARCHICAL DATA TRANSFORMED INTO A QUASI-RELATIONAL MODEL

    Get PDF
    Extensible Markup Language was mainly designed to easily represent documents; however, it has evolved and is now widely used for the representation of arbitrary data structures. There are many Application Programming Interfaces (APIs) to aid software developers with processing XML data. There are also many languages for querying and transforming XML, such as XPath or XQuery, which are widely used in this field. However, because of the great flexibility of XML documents, there are no unified data storing and processing standards, tools, or systems.On the other hand, a relational model is still the most-commonly and widely used standard for storing and querying data. Many Database Management Systems consist of components for loading and transforming hierarchical data. DB2 pureXML or Oracle SQLX are some of the most-recognized examples. Unfortunately, all of them require knowledge of additional tools, standards, and languages dedicated to accessing hierarchical data (for example, XPath or XQuery). Transforming XML documents into a (quasi)relational model and then querying (transformed) documents with SQL or SQL–like queries would significantly simplify the development of data-oriented systems and applications.In this paper, an implementation of the SQLxD query system is proposed. The XML documents are converted into a quasi-relational model (preserving their hierarchical structure), and the SQL–like language based on SQL-92 allows for efficient data querying
    • …
    corecore