218 research outputs found

    Development and evaluation of a Hadamard transform imaging spectrometer and a Hadamard transform thermal imager

    Get PDF
    A spectrometric imager and a thermal imager, which achieve multiplexing by the use of binary optical encoding masks, were developed. The masks are based on orthogonal, pseudorandom digital codes derived from Hadamard matrices. Spatial and/or spectral data is obtained in the form of a Hadamard transform of the spatial and/or spectral scene; computer algorithms are then used to decode the data and reconstruct images of the original scene. The hardware, algorithms and processing/display facility are described. A number of spatial and spatial/spectral images are presented. The achievement of a signal-to-noise improvement due to the signal multiplexing was also demonstrated. An analysis of the results indicates both the situations for which the multiplex advantage may be gained, and the limitations of the technique. A number of potential applications of the spectrometric imager are discussed

    Agile Processes in Software Engineering and Extreme Programming: 18th International Conference, XP 2017, Cologne, Germany, May 22-26, 2017, Proceedings

    Get PDF
    agile software development; lean development; scrum; project management; software developmen

    The Impact of Covid 19 on Agile Software Development: A Systematic Literature Review

    Get PDF
    In 2020, the world changed due to the Covid 19 pandemic. Containment measures to reduce the spread of the virus were planned and implemented by many countries and companies. Many companies sent their employees to work from home. This change has led to significant challenges in teams that were co-located before the pandemic. Agile software development teams were affected by this switch, as agile methods focus on communication and collaboration. Research results have already been published on the challenges of switching to remote work and the effects on agile software development teams. This article presents a systematic literature review. We identified 12 relevant papers for our studies and analyzed them on detail. The results provide an overview how agile software development teams reacted to the switch to remote work, e.g., which agile practices they adapted. We also gained insights on the changes of the performance of agile software development teams and social effects on agile software development teams during the pandemic

    Picaso: a computer language for art & design

    Get PDF
    PICASO is a computer language specifically designed to enable the artist/designer to use the digital computer as a graphic tool. It is a unique development in that it provides the artist for the first time, an integrated range of sophisticated graphic software in a format meaningful to the non-numerate user. This thesis examines the problem area of art and design, and reviews relevant computer software that is currently available. It continues to define the software requirements of the artist and designer, and illustrates how these are met by PICASO

    Capable Copper Electrodeposition Process for Integrated Circuit - Substrate Packaging Manufacturing

    Get PDF
    abstract: This work demonstrates a capable reverse pulse deposition methodology to influence gap fill behavior inside microvia along with a uniform deposit in the fine line patterned regions for substrate packaging applications. Interconnect circuitry in IC substrate packages comprises of stacked microvia that varies in depth from 20µm to 100µm with an aspect ratio of 0.5 to 1.5 and fine line patterns defined by photolithography. Photolithography defined pattern regions incorporate a wide variety of feature sizes including large circular pad structures with diameter of 20µm - 200µm, fine traces with varying widths of 3µm - 30µm and additional planar regions to define a IC substrate package. Electrodeposition of copper is performed to establish the desired circuit. Electrodeposition of copper in IC substrate applications holds certain unique challenges in that they require a low cost manufacturing process that enables a void-free gap fill inside the microvia along with uniform deposition of copper on exposed patterned regions. Deposition time scales to establish the desired metal thickness for such packages could range from several minutes to few hours. This work showcases a reverse pulse electrodeposition methodology that achieves void-free gap fill inside the microvia and uniform plating in FLS (Fine Lines and Spaces) regions with significantly higher deposition rates than traditional approaches. In order to achieve this capability, systematic experimental and simulation studies were performed. A strong correlation of independent parameters that govern the electrodeposition process such as bath temperature, reverse pulse plating parameters and the ratio of electrolyte concentrations is shown to the deposition kinetics and deposition uniformity in fine patterned regions and gap fill rate inside the microvia. Additionally, insight into the physics of via fill process is presented with secondary and tertiary current simulation efforts. Such efforts lead to show “smart” control of deposition rate at the top and bottom of via to avoid void formation. Finally, a parametric effect on grain size and the ensuing copper metallurgical characteristics of bulk copper is also shown to enable high reliability substrate packages for the IC packaging industry.Dissertation/ThesisDoctoral Dissertation Materials Science and Engineering 201

    Development of a multi-layered botmaster based analysis framework

    Get PDF
    Botnets are networks of compromised machines called bots that come together to form the tool of choice for hackers in the exploitation and destruction of computer networks. Most malicious botnets have the ability to be rented out to a broad range of potential customers, with each customer having an attack agenda different from the other. The result is a botnet that is under the control of multiple botmasters, each of which implement their own attacks and transactions at different times in the botnet. In order to fight botnets, details about their structure, users, and their users motives need to be discovered. Since current botnets require the information about the initial bootstrapping of a bot to a botnet, the monitoring of botnets are possible. Botnet monitoring is used to discover the details of a botnet, but current botnet monitoring projects mainly identify the magnitude of the botnet problem and tend to overt some fundamental problems, such as the diversified sources of the attacks. To understand the use of botnets in more detail, the botmasters that command the botnets need to be studied. In this thesis we focus on identifying the threat of botnets based on each individual botmaster. We present a multi-layered analysis framework which identifies the transactions of each botmaster and then we correlate the transactions with the physical evolution of the botnet. With these characteristics we discover what role each botmaster plays in the overall botnet operation. We demonstrate our results in our system: MasterBlaster, which discovers the level of interaction between each botmaster and the botnet. Our system has been evaluated in real network traces. Our results show that investigating the roles of each botmaster in a botnet should be essential and demonstrates its potential benefit for identifying and conducting additional research on analyzing botmaster interactions. We believe our work will pave the way for more fine-grained analysis of botnets which will lead to better protection capabilities and more rapid attribution of cyber crimes committed using botnets
    corecore