49,870 research outputs found

    Measuring and Evaluating a Design Complexity Metric for XML Schema Documents

    Get PDF
    The eXtensible Markup Language (XML) has been gaining extraordinary acceptance from many diverse enterprise software companies for their object repositories, data interchange, and development tools. Further, many different domains, organizations and content providers have been publishing and exchanging information via internet by the usage of XML and standard schemas. Efficient implementation of XML in these domains requires well designed XML schemas. In this point of view, design of XML schemas plays an extremely important role in software development process and needs to be quantified for ease of maintainability. In this paper, an attempt has been made to evaluate the quality of XML schema documents (XSD) written in W3C XML Schema language. We propose a metric, which measures the complexity due to the internal architecture of XSD components, and due to recursion. This is the single metric, which cover all major factors responsible for complexity of XSD. The metric has been empirically and theoretically validated, demonstrated with examples and supported by comparison with other well known structure metrics applied on XML schema documents

    XML Matchers: approaches and challenges

    Full text link
    Schema Matching, i.e. the process of discovering semantic correspondences between concepts adopted in different data source schemas, has been a key topic in Database and Artificial Intelligence research areas for many years. In the past, it was largely investigated especially for classical database models (e.g., E/R schemas, relational databases, etc.). However, in the latest years, the widespread adoption of XML in the most disparate application fields pushed a growing number of researchers to design XML-specific Schema Matching approaches, called XML Matchers, aiming at finding semantic matchings between concepts defined in DTDs and XSDs. XML Matchers do not just take well-known techniques originally designed for other data models and apply them on DTDs/XSDs, but they exploit specific XML features (e.g., the hierarchical structure of a DTD/XSD) to improve the performance of the Schema Matching process. The design of XML Matchers is currently a well-established research area. The main goal of this paper is to provide a detailed description and classification of XML Matchers. We first describe to what extent the specificities of DTDs/XSDs impact on the Schema Matching task. Then we introduce a template, called XML Matcher Template, that describes the main components of an XML Matcher, their role and behavior. We illustrate how each of these components has been implemented in some popular XML Matchers. We consider our XML Matcher Template as the baseline for objectively comparing approaches that, at first glance, might appear as unrelated. The introduction of this template can be useful in the design of future XML Matchers. Finally, we analyze commercial tools implementing XML Matchers and introduce two challenging issues strictly related to this topic, namely XML source clustering and uncertainty management in XML Matchers.Comment: 34 pages, 8 tables, 7 figure

    Constraint-based Query Distribution Framework for an Integrated Global Schema

    Full text link
    Distributed heterogeneous data sources need to be queried uniformly using global schema. Query on global schema is reformulated so that it can be executed on local data sources. Constraints in global schema and mappings are used for source selection, query optimization,and querying partitioned and replicated data sources. The provided system is all XML-based which poses query in XML form, transforms, and integrates local results in an XML document. Contributions include the use of constraints in our existing global schema which help in source selection and query optimization, and a global query distribution framework for querying distributed heterogeneous data sources.Comment: The Proceedings of the 13th INMIC 2009), Dec. 14-15, 2009, Islamabad, Pakistan. Pages 1 - 6 Print ISBN: 978-1-4244-4872-2 INSPEC Accession Number: 11072575 Date of Current Version : 15 January 201

    Discovering Restricted Regular Expressions with Interleaving

    Full text link
    Discovering a concise schema from given XML documents is an important problem in XML applications. In this paper, we focus on the problem of learning an unordered schema from a given set of XML examples, which is actually a problem of learning a restricted regular expression with interleaving using positive example strings. Schemas with interleaving could present meaningful knowledge that cannot be disclosed by previous inference techniques. Moreover, inference of the minimal schema with interleaving is challenging. The problem of finding a minimal schema with interleaving is shown to be NP-hard. Therefore, we develop an approximation algorithm and a heuristic solution to tackle the problem using techniques different from known inference algorithms. We do experiments on real-world data sets to demonstrate the effectiveness of our approaches. Our heuristic algorithm is shown to produce results that are very close to optimal.Comment: 12 page

    A Conceptual Schema Based XML Schema with Integrity Constraints Checking

    Get PDF
    The more popular XML for exchanging and representing information on Web, the more important Flat XML (XML) and intelligent editors become. For data exchanging, an XML Data with an XML Schema and integrity constraints are preferred. We employ an Object-Role Modeling (ORM) for enriching the XML Schema constraints and providing better validation the XML Data. An XML conceptual schema is presented using the ORM conceptual model. Editor Meta Tables are generated from the conceptual schema diagram and are populated. A User XML Schema base on the information in the Editor Meta Tables is generated. However, W3C XML Schema language does not support all of the ORM constraints. Therefore, we propose an Editor XML Schema and an Editor XML Data to cover unsupported the ORM constraints. We propose the algorithms for defining constraint in the User XML Schema and extending validity constraint checking. Finally, XQuery is used for extending validity checking

    Ensuring Query Compatibility with Evolving XML Schemas

    Get PDF
    During the life cycle of an XML application, both schemas and queries may change from one version to another. Schema evolutions may affect query results and potentially the validity of produced data. Nowadays, a challenge is to assess and accommodate the impact of theses changes in rapidly evolving XML applications. This article proposes a logical framework and tool for verifying forward/backward compatibility issues involving schemas and queries. First, it allows analyzing relations between schemas. Second, it allows XML designers to identify queries that must be reformulated in order to produce the expected results across successive schema versions. Third, it allows examining more precisely the impact of schema changes over queries, therefore facilitating their reformulation

    From local laboratory data to public domain database in search of indirect association of diseases: AJAX based gene data search engine.

    Get PDF
    This paper presents an extensible schema for capturing laboratory gene variance data with its meta-data properties in a semi-structured environment. This paper also focuses on the issues of creating a local and task specific component database which is a subset of global data resources. An XML based genetic disorder component database schema is developed with adequate flexibilities to facilitate searching of gene mutation data. A web based search engine is developed that allows researchers to query a set of gene parameters obtained from local XML schema and subsequently allow them to automatically establish a link with the public domain gene databases. The application applies AJAX (Asynchronous Javascript and XML), a cutting-edge web technology, to carry out the gene data searching function
    corecore