801 research outputs found

    XML retrieval using pruned element-index files

    Get PDF
    An element-index is a crucial mechanism for supporting content-only (CO) queries over XML collections. A full element-index that indexes each element along with the content of its descendants involves a high redundancy and reduces query processing efficiency. A direct index, on the other hand, only indexes the content that is directly under each element and disregards the descendants. This results in a smaller index, but possibly in return to some reduction in system effectiveness. In this paper, we propose using static index pruning techniques for obtaining more compact index files that can still result in comparable retrieval performance to that of a full index. We also compare the retrieval performance of these pruning based approaches to some other strategies that make use of a direct element-index. Our experiments conducted along with the lines of INEX evaluation framework reveal that pruned index files yield comparable to or even better retrieval performance than the full index and direct index, for several tasks in the ad hoc track. © 2010 Springer-Verlag Berlin Heidelberg

    Efficiency and effectiveness of XML keyword search using a full element index

    Get PDF
    Ankara : The Department of Computer Engineering and the Institute of Engineering and Science of Bilkent University, 2010.Thesis (Master's) -- Bilkent University, 2010.Includes bibliographical references leaves 63-67.In the last decade, both the academia and industry proposed several techniques to allow keyword search on XML databases and document collections. A common data structure employed in most of these approaches is an inverted index, which is the state-of-the-art for conducting keyword search over large volumes of textual data, such as world wide web. In particular, a full element-index considers (and indexes) each XML element as a separate document, which is formed of the text directly contained in it and the textual content of all of its descendants. A major criticism for a full element-index is the high degree of redundancy in the index (due to the nested structure of XML documents), which diminishes its usage for large-scale XML retrieval scenarios. As the rst contribution of this thesis, we investigate the e ciency and e ectiveness of using a full element-index for XML keyword search. First, we suggest that lossless index compression methods can signi cantly reduce the size of a full element-index so that query processing strategies, such as those employed in a typical search engine, can e ciently operate on it. We show that once the most essential problem of a full element-index, i.e., its size, is remedied, using such an index can improve both the result quality (e ectiveness) and query execution performance (e ciency) in comparison to other recently proposed techniques in the literature. Moreover, using a full element-index also allows generating query results in di erent forms, such as a ranked list of documents (as expected by a search engine user) or a complete list of elements that include all of the query terms (as expected by a DBMS user), in a uni ed framework. As a second contribution of this thesis, we propose to use a lossy approach, static index pruning, to further reduce the size of a full element-index. In this way, we aim to eliminate the repetition of an element's terms at upper levels in an adaptive manner considering the element's textual content and search system's ranking function. That is, we attempt to remove the repetitions in the index only when we expect that removal of them would not reduce the result quality. We conduct a well-crafted set of experiments and show that pruned index les are comparable or even superior to the full element-index up to very high pruning levels for various ad hoc tasks in terms of retrieval e ectiveness. As a nal contribution of this thesis, we propose to apply index pruning strategies to reduce the size of the document vectors in an XML collection to improve the clustering performance of the collection. Our experiments show that for certain cases, it is possible to prune up to 70% of the collection (or, more speci cally, underlying document vectors) and still generate a clustering structure that yields the same quality with that of the original collection, in terms of a set of evaluation metrics.Atılgan, DuyguM.S

    Exploiting index pruning methods for clustering XML collections

    Get PDF
    In this paper, we first employ the well known Cover-Coefficient Based Clustering Methodology (C3M) for clustering XML documents. Next, we apply index pruning techniques from the literature to reduce the size of the document vectors. Our experiments show that for certain cases, it is possible to prune up to 70% of the collection (or, more specifically, underlying document vectors) and still generate a clustering structure that yields the same quality with that of the original collection, in terms of a set of evaluation metrics. © 2010 Springer-Verlag Berlin Heidelberg

    Exploiting Index Pruning Methods for Clustering XML Collections

    Get PDF
    In this paper, we first employ the well known Cover-Coefficient Based Clustering Methodology (C3 M) for clustering XML documents. Next, we apply index pruning techniques from the literature to reduce the size of the document vectors. Our experiments show that for certain cases, it is possible to prune up to 70% of the collection (or, more specifically, underlying document vectors) and still generate a clustering structure that yields the same quality with that of the original collection, in terms of a set of evaluation metrics

    Efficient Retrieval of Web Services Using Prioritization and Clustering

    Get PDF
    WEB services are software entities that have a well defined interface and perform a specific task. Typical examples include services returning information to the user, such as news or weather forecast services. A web service is formally described in a standardized language (WSDL). The service description may include the parameters associated with web services like input , output and quality of service. As web services and service providers proliferate, there will be a large number of candidate, and likely competing, services for fulfilling a desired task. Hence, effective service discovery mechanisms are required for identifying and retrieving the most appropriate services. The main contributions of our paper are summarized as follows; we propose and implement a method for determining dominance relationships among service advertisements that simultaneously takes into consideration multiple PDM criteria. We introduce a method for prioritization and clustering web services based on similarity measures using efficient algorithms Keywords : Web Service , PDM , dominance score ,TKDD, clustering

    A Survey on Index Support for Item Set Mining

    Get PDF
    It is very difficult to handle the huge amount of information stored in modern databases. To manage with these databases association rule mining is currently used, which is a costly process that involves a significant amount of time and memory. Therefore, it is necessary to develop an approach to overcome these difficulties. A suitable data structures and algorithms must be developed to effectively perform the item set mining. An index includes all necessary characteristics potentially needed during the mining task; the extraction can be executed with the help of the index, without accessing the database. A database index is a data structure that enhances the speed of information retrieval operations on a database table at very low cost and increased storage space. The use index permits user interaction, in which the user can specify different attributes for item set extraction. Therefore, the extraction can be completed with the use index and without accessing the original database. Index also supports for reusing concept to mine item sets with the use of any support threshold. This paper also focuses on the survey of index support for item set mining which are proposed by various authors
    corecore