534 research outputs found

    Mining complex structured data: Enhanced methods and applications

    Get PDF
    Conventional approaches to analysing complex business data typically rely on process models, which are difficult to construct and use. This thesis addresses this issue by converting semi-structured event logs to a simpler flat representation without any loss of information, which then enables direct applications of classical data mining methods. The thesis also proposes an effective and scalable classification method which can identify distinct characteristics of a business process for further improvements

    Tree model guided (TMG) enumeration as the basis for mining frequent patterns from XML documents

    Full text link
    University of Technology, Sydney. Faculty of Information Technology.Association mining consists of two important problems, namely frequent patterns discovery and rule construction. The former task is considered to be a more challenging problem to solve. Because of its importance and application in a number of data mining tasks, it has become the focus of many studies. A substantial amount of research has gone into the development of efficient algorithms for mining patterns from large structured or relational data. Compared with the fruitful achievements in mining structured data, mining in the semi-structured world still remains at a preliminary stage. The most popular representative of the semi-structured data is XML. Mining frequent patterns from XML poses more challenges in comparison to mining frequent patterns from relational data because XML is a tree-structured data and has an ordered data context. Moreover, XML data in general is larger in data size due to richer contents and more meta-data. Dealing with XML, thus involves greater unprecedented complexity in comparison to mining relational data. Mining frequent patterns from XML can be recast as mining frequent tree structures from a database of XML documents. The increase of XML data and the need for mining semi-structured data has sparked a lot of interest in finding frequent rooted trees in forests. In this thesis, we aim to develop a framework to mine frequent patterns from XML documents. The framework utilizes a structure-guided enumeration approach, Tree Model Guided (TMG), for efficient enumeration of tree structure and it makes use of novel structures for fast enumeration and frequency counting. By utilizing a novel array-based structure, an embedded list (EL), the framework offers a simple sequencelike tree enumeration technique. The effectiveness and extendibility of the framework is demonstrated in that it can be utilized not only for enumerating ordered subtrees but also for enumerating unordered subtrees and subsequences. Furthermore, the framework tackles the unprecedented complexity in mining frequent tree-structured patterns by generating only valid candidates with non-zero frequency count and employing a constraint-driven approach. Our experimental studies comparing the proposed framework with the state-of-the-art algorithms demonstrate the effectiveness and the efficiency of the proposed framework

    Mining XML Documents

    Get PDF
    XML documents are becoming ubiquitous because of their rich and flexible format that can be used for a variety of applications. Giving the increasing size of XML collections as information sources, mining techniques that traditionally exist for text collections or databases need to be adapted and new methods to be invented to exploit the particular structure of XML documents. Basically XML documents can be seen as trees, which are well known to be complex structures. This chapter describes various ways of using and simplifying this tree structure to model documents and support efficient mining algorithms. We focus on three mining tasks: classification and clustering which are standard for text collections; discovering of frequent tree structure which is especially important for heterogeneous collection. This chapter presents some recent approaches and algorithms to support these tasks together with experimental evaluation on a variety of large XML collections

    Quality and interestingness of association rules derived from data mining of relational and semi-structured data

    Get PDF
    Deriving useful and interesting rules from a data mining system are essential and important tasks. Problems such as the discovery of random and coincidental patterns or patterns with no significant values, and the generation of a large volume of rules from a database commonly occur. Works on sustaining the interestingness of rules generated by data mining algorithms are actively and constantly being examined and developed. As the data mining techniques are data-driven, it is beneficial to affirm the rules using a statistical approach. It is important to establish the ways in which the existing statistical measures and constraint parameters can be effectively utilized and the sequence of their usage.In this thesis, a systematic way to evaluate the association rules discovered from frequent, closed and maximal itemset mining algorithms; and frequent subtree mining algorithm including the rules based on induced, embedded and disconnected subtrees is presented. With reference to the frequent subtree mining, in addition a new direction is explored based on utilizing the DSM approach capable of preserving all information from tree-structured database in a flat data format, consequently enabling the direct application of a wider range of data mining analysis/techniques to tree-structured data. Implications of this approach were investigated and it was found that basing rules on disconnected subtrees, can be useful in terms of increasing the accuracy and the coverage rate of the rule set.A strategy that combines data mining and statistical measurement techniques such as sampling, redundancy and contradictive checks, correlation and regression analysis to evaluate the rules is developed. This framework is then applied to real-world datasets that represent diverse characteristics of data/items. Empirical results show that with a proper combination of data mining and statistical analysis, the proposed framework is capable of eliminating a large number of non-significant, redundant and contradictive rules while preserving relatively valuable high accuracy rules. Moreover, the results reveal the important characteristics and differences between mining frequent, closed or maximal itemsets; and mining frequent subtree including the rules based on induced, embedded and disconnected subtrees; as well as the impact of confidence measure for the prediction and classification task

    A survey of frequent subgraph mining algorithms

    Get PDF

    Pattern discovery in structural databases with applications to bioinformatics

    Get PDF
    Frequent structure mining (FSM) aims to discover and extract patterns frequently occurring in structural data such as trees and graphs. FSM finds many applications in bioinformatics, XML processing, Web log analysis, and so on. In this thesis, two new FSM techniques are proposed for finding patterns in unordered labeled trees. Such trees can be used to model evolutionary histories of different species, among others. The first FSM technique finds cousin pairs in the trees. A cousin pair is a pair of nodes sharing the same parent, the same grandparent, or the same great-grandparent, etc. Given a tree T, our algorithm finds all interesting cousin pairs of T in O(|T|2) time where |T| is the number of nodes in T. Experimental results on synthetic data and phylogenies show the scalability and effectiveness of the proposed technique. This technique has been applied to locating co-occurring patterns in multiple evolutionary trees, evaluating the consensus of equally parsimonious trees, and finding kernel trees of groups of phylogenies. The technique is also extended to undirected acyclic graphs (or free trees). The second FSM technique extends traditional MAST (maximum agreement subtree) algorithms by employing the Apriori data mining technique to find frequent agreement subtrees in multiple phylogenies. The correctness and completeness of the new mining algorithm are presented. The method is also extended to unrooted phylogenetic trees. Both FSM techniques studied in the thesis have been implemented into a toolkit, which is fully operational and accessible on the World Wide Web

    EvoMiner: Frequent Subtree Mining in Phylogenetic Databases

    Get PDF
    The problem of mining collections of trees to identify common patterns, called frequent subtrees (FSTs), arises often when trying to interpret the results of phylogenetic analysis. FST mining generalizes the well-known maximum agreement subtree problem. Here we present EvoMiner, a new algorithm for mining frequent subtrees in collections of phylogenetic trees. EvoMiner is an Apriori-like level-wise method, which uses a novel phylogeny-specific constant-time candidate generation scheme, an efficient fingerprinting-based technique for downward closure, and a lowest common ancestor based support counting step that requires neither costly subtree operations nor database traversal. Our algorithm achieves speed-ups of up to 100 times or more over Phylominer, the current state-of-the-art algorithm for mining phylogenetic trees. EvoMiner can also work in depth first enumeration mode, to use less memory at the expense of speed. We demonstrate the utility of FST mining as a way to extract meaningful phylogenetic information from collections of trees when compared to maximum agreement subtrees and majority rule trees --- two commonly used approaches in phylogenetic analysis for extracting consensus information from a collection of trees over a common leaf set
    • …
    corecore