159 research outputs found

    High-Performance Cloud Computing: A View of Scientific Applications

    Full text link
    Scientific computing often requires the availability of a massive number of computers for performing large scale experiments. Traditionally, these needs have been addressed by using high-performance computing solutions and installed facilities such as clusters and super computers, which are difficult to setup, maintain, and operate. Cloud computing provides scientists with a completely new model of utilizing the computing infrastructure. Compute resources, storage resources, as well as applications, can be dynamically provisioned (and integrated within the existing infrastructure) on a pay per use basis. These resources can be released when they are no more needed. Such services are often offered within the context of a Service Level Agreement (SLA), which ensure the desired Quality of Service (QoS). Aneka, an enterprise Cloud computing solution, harnesses the power of compute resources by relying on private and public Clouds and delivers to users the desired QoS. Its flexible and service based infrastructure supports multiple programming paradigms that make Aneka address a variety of different scenarios: from finance applications to computational science. As examples of scientific computing in the Cloud, we present a preliminary case study on using Aneka for the classification of gene expression data and the execution of fMRI brain imaging workflow.Comment: 13 pages, 9 figures, conference pape

    PACMAS: A Personalized, Adaptive, and Cooperative MultiAgent System Architecture

    Get PDF
    In this paper, a generic architecture, designed to support the implementation of applications aimed at managing information among different and heterogeneous sources, is presented. Information is filtered and organized according to personal interests explicitly stated by the user. User pro- files are improved and refined throughout time by suitable adaptation techniques. The overall architecture has been called PACMAS, being a support for implementing Personalized, Adaptive, and Cooperative MultiAgent Systems. PACMAS agents are autonomous and flexible, and can be made personal, adaptive and cooperative, depending on the given application. The peculiarities of the architecture are highlighted by illustrating three relevant case studies focused on giving a support to undergraduate and graduate students, on predicting protein secondary structure, and on classifying newspaper articles, respectively

    Adaptive rule-based malware detection employing learning classifier systems

    Get PDF
    Efficient and accurate malware detection is increasingly becoming a necessity for society to operate. Existing malware detection systems have excellent performance in identifying known malware for which signatures are available, but poor performance in anomaly detection for zero day exploits for which signatures have not yet been made available or targeted attacks against a specific entity. The primary goal of this thesis is to provide evidence for the potential of learning classier systems to improve the accuracy of malware detection. A customized system based on a state-of-the-art learning classier system is presented for adaptive rule-based malware detection, which combines a rule-based expert system with evolutionary algorithm based reinforcement learning, thus creating a self-training adaptive malware detection system which dynamically evolves detection rules. This system is analyzed on a benchmark of malicious and non-malicious files. Experimental results show that the system can outperform C4.5, a well-known non-adaptive machine learning algorithm, under certain conditions. The results demonstrate the system\u27s ability to learn effective rules from repeated presentations of a tagged training set and show the degree of generalization achieved on an independent test set. This thesis is an extension and expansion of the work published in the Security, Trust, and Privacy for Software Applications workshop in COMPSAC 2011 - the 35th Annual IEEE Signature Conference on Computer Software and Applications --Abstract, page iii

    Controlled self-organisation using learning classifier systems

    Get PDF
    The complexity of technical systems increases, breakdowns occur quite often. The mission of organic computing is to tame these challenges by providing degrees of freedom for self-organised behaviour. To achieve these goals, new methods have to be developed. The proposed observer/controller architecture constitutes one way to achieve controlled self-organisation. To improve its design, multi-agent scenarios are investigated. Especially, learning using learning classifier systems is addressed

    An architectural framework for self-configuration and self-improvement at runtime

    Get PDF
    [no abstract

    An Adaptive, Emotional, and Expressive Reminding System

    Get PDF
    Abstract We are currently developing an adaptive, emotional, and expressive interface agent, which learns when and how to notify users about self-assigned tasks and events. In this paper, we describe the learning system and the user feedback mechanism we have designed. Then, we discuss issues concerning the expression of emotions, in the situation where the user should not be distracted by an adaptive tool and is not expected to create a strong relationship with it

    Evolutionary Reinforcement Learning of Spoken Dialogue Strategies

    Get PDF
    Institute for Communicating and Collaborative SystemsFrom a system developer's perspective, designing a spoken dialogue system can be a time-consuming and difficult process. A developer may spend a lot of time anticipating how a potential user might interact with the system and then deciding on the most appropriate system response. These decisions are encoded in a dialogue strategy, essentially a mapping between anticipated user inputs and appropriate system outputs. To reduce the time and effort associated with developing a dialogue strategy, recent work has concentrated on modelling the development of a dialogue strategy as a sequential decision problem. Using this model, reinforcement learning algorithms have been employed to generate dialogue strategies automatically. These algorithms learn strategies by interacting with simulated users. Some progress has been made with this method but a number of important challenges remain. For instance, relatively little success has been achieved with the large state representations that are typical of real-life systems. Another crucial issue is the time and effort associated with the creation of simulated users. In this thesis, I propose an alternative to existing reinforcement learning methods of dialogue strategy development. More specifically, I explore how XCS, an evolutionary reinforcement learning algorithm, can be used to find dialogue strategies that cover large state spaces. Furthermore, I suggest that hand-coded simulated users are sufficient for the learning of useful dialogue strategies. I argue that the use of evolutionary reinforcement learning and hand-coded simulated users is an effective approach to the rapid development of spoken dialogue strategies. Finally, I substantiate this claim by evaluating a learned strategy with real users. Both the learned strategy and a state-of-the-art hand-coded strategy were integrated into an end-to-end spoken dialogue system. The dialogue system allowed real users to make flight enquiries using a live database for an Edinburgh-based airline. The performance of the learned and hand-coded strategies were compared. The evaluation results show that the learned strategy performs as well as the hand-coded one (81% and 77% task completion respectively) but takes much less time to design (two days instead of two weeks). Moreover, the learned strategy compares favourably with previous user evaluations of learned strategies

    Proactive Adaptation in Self-Organizing Task-based Runtime Systems for Different Computing Classes

    Get PDF
    Moderne Computersysteme bieten Anwendern und Anwendungsentwicklern ein hohes Maß an Parallelität und Heterogenität. Die effiziente Nutzung dieser Systeme erfordert jedoch tiefgreifende Kenntnisse, z.B. der darunterliegenden Hardware-Plattform und den notwendigen Programmiermodellen, und umfangreiche Arbeit des Entwicklers. In dieser Thesis bezieht sich die effiziente Nutzung auf die Gesamtausführungszeit der Anwendungen, den Energieverbrauch des Systems, die maximale Temperatur der Verarbeitungseinheiten und die Zuverlässigkeit des Systems. Neben den verschiedenen Optimierungszielen muss ein Anwendungsentwickler auch die spezifischen Einschränkungen und Randbedingungen des Systems berücksichtigen, wie z. B. Deadlines oder Sicherheitsgarantien, die mit bestimmten Anwendungsbereichen einhergehen. Diese Komplexität heterogener Systeme macht es unmöglich, alle potenziellen Systemzustände und Umwelteinflüsse, die zur Laufzeit auftreten können, vorherzusagen. Die System- und Anwendungsentwickler sind somit nicht in der Lage, zur Entwurfszeit festzulegen, wie das System und die Anwendungen in allen möglichen Situationen reagieren sollen. Daher ist es notwendig, die Systeme zur Laufzeit der aktuellen Situation anzupassen, um ihr Verhalten entsprechend zu optimieren. In eingebetteten Systemen mit begrenzten Kühlkapazitäten muss z.B. bei Erreichen einer bestimmten Temperaturschwelle eine Lastverteilung vorgenommen, die Frequenz verringert oder Verarbeitungseinheiten abgeschaltet werden, um die Wärmeentwicklung zu reduzieren. Normalerweise reicht es aber nicht aus, einfach nur auf einen ungünstigen Systemzustand zu reagieren. Das Ziel sollte darin bestehen, ungünstige oder fehlerhafte Systemzustände vor dem Auftreten zu vermeiden, um die Notwendigkeit des Aufrufs von Notfallfunktionen zu verringern und die Benutzerfreundlichkeit zu verbessern. Anstatt beispielsweise die Wärmeentwicklung durch eine Neuverteilung der Anwendungen zu reduzieren, könnten proaktive Mechanismen kritische Temperaturen bereits im Vorfeld vermeiden, indem sie bestimmte unkritische Aufgaben verzögern oder deren Genauigkeit oder QoS verringern. Auf diese Weise wird die Systemlast reduziert, bevor ein kritischer Punkt erreicht wird. Lösungen des aktuellen Stands der Technik wie einheitliche Programmiersprachen oder Laufzeitsysteme adressieren einige der oben genannten Herausforderungen, jedoch existiert kein Ansatz, der in der Lage ist, eine Optimierung mehrerer sich widersprechender Zielfunktionen dynamisch und vor allem proaktiv durchzuführen. Ein Konzept, das diese komplexe Aufgabe für den Entwickler übernimmt und eine Möglichkeit zur dynamischen und proaktiven Anpassung an Veränderungen bietet, ist die Selbstorganisation. Selbstorganisation ist jedoch definiert als ein Prozess ohne externe Kontrolle oder Steuerung. Im Kontext der Systemoptimierung kann dies leicht zu unerwünschten Ergebnissen führen. Ein Ansatz, der Selbstorganisation mit einem Kontrollmechanismus kombiniert, welcher auf Robustheit und Widerstandsfähigkeit gegenüber äußeren Störungen abzielt, ist Organic Computing. Das bestimmende Merkmal von Organic Computing ist eine Observer/Controller-Architektur. Das Konzept dieser Architektur besteht darin, den aktuellen Zustand des Systems und der Umgebung zu überwachen, diese Daten zu analysieren und auf der Grundlage dieser Analyse Entscheidungen über das zukünftige Systemverhalten zu treffen. Organic Computing ermöglicht es also auf der Grundlage der vergangenen und des aktuellen Zustands proaktiv Mechanismen auszuwählen und auszulösen, die das System optimieren und unerwünschte Zustände vermeiden. Um die Vorteile des Organic Computings auf moderne heterogene Systeme zu übertragen, kombiniere ich den Organic Computing-Ansatz mit einem Laufzeitsystem. Laufzeitsysteme sind ein vielversprechender Kandidat für die Umsetzung des Organic Computing-Ansatzes, da sie bereits die Ausführung von Anwendungen überwachen und steuern. Insbesondere betrachte und bearbeite ich in dieser Dissertation die folgenden Forschungsthemen, indem ich die Konzepte des Organic Computings und der Laufzeitsysteme kombiniere: • Erfassen des aktuellen Systemzustands durch Überwachung von Sensoren und Performance Countern • Vorhersage zukünftiger Systemzustände durch Analyse des vergangenen Verhaltens • Nutzung von Zustandsinformationen zur proaktiven Anpassung des Systems Ich erweitere das Thema der Erfassung von Systemzuständen auf zwei Arten. Zunächst führe ich eine neuartige heuristische Metrik zur Berechnung der Zuverlässigkeit einer Verarbeitungseinheit ein, die auf symptombasierter Fehlererkennung basiert. Symptombasierte Fehlererkennung ist eine leichtgewichtige Methode zur dynamischen Erkennung von soften Hardware-Fehlern durch Überwachung des Ausführungsverhaltens mit Performance Countern. Die dynamische Erkennung von Fehlern ermöglicht dann die Berechnung einer heuristischen Fehlerrate einer Verarbeitungseinheit in einem bestimmten Zeitfenster. Die Fehlerrate wird verwendet, um die Anzahl der erforderlichen Ausführungen einer Anwendung zu berechnen, um eine bestimmte Ergebniszuverlässigkeit, also eine Mindestwahrscheinlichkeit für ein korrektes Ergebnis, zu gewährleisten. Ein wichtiger Aspekt der Zustandserfassung ist die Minimierung des entstehenden Overheads. Ich verringere die Anzahl der für OpenMP-Tasks notwendigen Profiling-Durchläufe durch Thread-Interpolation und Überprüfungen des Skalierungsverhaltens. Zusätzlich untersuche ich die Vorhersage von OpenCL Task-Ausführungszeiten. Die Prädiktoren der Ausführungszeiten werden mit verschiedenen maschinellen Lernalgorithmen trainiert. Als Input werden Profile der Kernel verwendet, die durch statische Codeanalyse erstellt wurden. Um in dieser Dissertation zukünftige Systemzustände vorherzusagen, sollen Anwendungen vorausgesagt werden, die in naher Zukunft im System vorkommen werden. In Kombination mit der Ausführungsdatenbank ermöglicht dies die Schätzung der anstehenden Kosten, die das System zu bewältigen hat. In dieser Arbeit werden zwei Mechanismen zur Vorhersage von Anwendungen/Tasks entwickelt. Der erste Prädiktor zielt darauf ab, neue Instanzen unabhängiger Tasks vorherzusagen. Der zweite Mechanismus betrachtet Ausführungsmuster abhängiger Anwendungen und sagt auf dieser Grundlage zukünftig auftretende Anwendungen vorher. Beide Mechanismen verwenden eine Vorhersagetabelle, die auf Markov-Prädiktoren und dem Abgleich von Mustern basiert. In dieser Arbeit wird das Wissen, das durch die Systemüberwachung und die Vorhersage zukünftiger Anwendungen gewonnen wird, verwendet, um die Optimierungsziele des Systems proaktiv in Einklang zu bringen und zu gewichten. Dies geschieht durch eine Reihe von Regeln, die eine Systemzustandsbeschreibung, bestehend aus dem aktuellen Zustand, Vorhersagen und Randbedingungen bzw. Beschränkungen, auf einen Vektor aus Gewichten abbilden. Zum Erlernen der Regelmenge wird ein Extended Classifer System (XCS) eingesetzt. Das XCS ist in eine hierarchische Architektur eingebettet, die nach den Prinzipien des Organic Computing entworfen wurde. Eine wichtige Designentscheidung ist dabei die Auslagerung der Erstellung neuer Regeln an einen Offline-Algorithmus, der einen Simulator nutzt und parallel zum normalen Systemablauf ausgeführt wird. Dadurch wird sichergestellt, dass keine ungetesteten Regeln, deren Auswirkungen noch nicht bekannt sind, dem laufenden System hinzugefügt werden. Die sich daraus ergebenden Gewichte werden schließlich verwendet, um eine Bewertungsfunktion für List Scheduling-Algorithmen zu erstellen. Diese Dissertation erweitert das Forschungsgebiet der Scheduling-Algorithmen durch zwei Mechanismen für dynamisches Scheduling. Die erste Erweiterung konzentriert sich auf nicht sicherheitskritische Systeme, die Prioritäten verwenden, um die unterschiedliche Wichtigkeit von Tasks auszudrücken. Da statische Prioritäten in stark ausgelasteten Systemen zu Starvation führen können, habe ich einen dynamischen Ageing-Mechanismus entwickelt, der dazu in der Lage ist, die Prioritäten der Tasks entsprechend der aktuellen Auslastung und ihrer Wartezeiten anzupassen. Dadurch reduziert der Mechanismus die Gesamtlaufzeit über alle Tasks und die Wartezeit für Tasks mit niedrigerer Priorität. Noch ist eine große Anzahl von Anwendungen nicht dazu bereit, den hohen Grad an Parallelität zu nutzen, den moderne Computersysteme bieten. Ein Konzept, das versucht dieses Problem zu lösen, indem es mehrere verschiedene Prozesse auf demselben Rechenknoten zur Ausführung bringt, ist das Co-Scheduling. In dieser Dissertation stelle ich einen neuartigen Co-Scheduling-Mechanismus vor, welcher die Task-Schedules mehrerer Laufzeitsysteminstanzen optimiert, die auf demselben Rechenknoten ausgeführt werden. Um die notwendigen Informationen zwischen den Laufzeitsysteminstanzen zu teilen, speichert der Mechanismus die Daten in Shared Memory. Sobald ein Laufzeitsystem neue Tasks in das System einfügt, prüft der Mechanismus, ob die Berechnung eines neuen Schedules sinnvoll ist. Wird die Entscheidung getroffen, einen neuen Schedule zu berechnen, setzt der Mechanismus Simulated Annealing ein, um alle Tasks, die bisher noch nicht mit ihrer Ausführung begonnen haben, neu auf Ausführungseinheiten abzubilden. Zusammenfassend lässt sich sagen, dass diese Arbeit neuartige Mechanismen und Algorithmen sowie Erweiterungen zu verschiedenen Forschungsgebieten anbietet, um ein proaktives selbst-organisierendes System zu implementieren, das sich an neue und unbekannte Situationen anpassen kann. Dabei wird die Komplexität für Benutzer und Anwendungsentwickler reduziert, indem die Entscheidungsfindung in das System selbst ausgelagert wird. Gleichzeitig sorgt dieser Ansatz für eine effiziente Nutzung der Ressourcen des Systems. Insgesamt leistet diese Arbeit die folgenden Beiträge zur Erweiterung des Stands der Forschung: • Einführung einer neuartigen heuristischen Metrik zur Messung der Zuverlässigkeit von Verarbeitungseinheiten. Die Metrik basiert auf einer leichtgewichtigen Methode zur Fehlererkennung, genannt symptombasierte Fehlererkennung. Mit der symptombasierten Fehlererkennung ist es möglich, mehrere injizierte Fehlerklassen und Interferenzen, die Soft-Hardware-Fehler simulieren, sowohl auf einer CPU als auch auf einer GPU zuverlässig zu erkennen. Darüber hinaus werden diese Ergebnisse durch Welch\u27s t-Test statistisch bestätigt. • Vorschlag eines Vorhersagemodells für die Ausführungszeit von OpenCL Kerneln, das auf statischer Code-Analyse basiert. Das Modell ist in der Lage, die schnellste Verarbeitungseinheit aus einer Menge von Verarbeitungseinheiten mit einer Genauigkeit von im schlechtesten Fall 69%69\,\% auszuwählen. Zum Vergleich: eine Referenzvariante, welche immer den Prozessor vorhersagt, der die meisten Kernel am schnellsten ausführt, erzielt eine Genauigkeit von 25%25\,\%. Im besten Fall erreicht das Modell eine Genauigkeit von bis zu 83%83\,\%. • Bereitstellung von zwei Prädiktoren für kommende Tasks/Anwendungen. Der erste Mechanismus betrachtet unabhängige Tasks, die ständig neue Task-Instanzen erstellen, der zweite abhängige Anwendungen, die Ausführungsmuster bilden. Dabei erzielt der erste Mechanismus bei der Vorhersage der Zeitspanne zwischen zwei aufeinanderfolgenden Task-Instanzen einen maximalen\\ sMAPEsMAPE-Wert von 4,33%4,33\,\% für sporadische und 0,002%0,002 \,\% für periodische Tasks. Darüber hinaus werden Tasks mit einem aperiodischen Ausführungsschema zuverlässig erkannt. Der zweite Mechanismus erreicht eine Genauigkeit von 77,6%77,6 \,\% für die Vorhersage der nächsten anstehenden Anwendung und deren Startzeit. • Einführung einer Umsetzung eines hierarchischen Organic Computing Frameworks mit dem Anwendungsgebiet Task-Scheduling. Dieses Framework enthält u.a. ein modifiziertes XCS, für dessen Design und Implementierung ein neuartiger Reward-Mechanismus entwickelt wird. Der Mechanismus bedient sich dabei eines speziell für diesen Zweck entwickelten Simulators zur Berechnung von Task-Ausführungskosten. Das XCS bildet Beschreibungen des Systemzustands auf Gewichte zur Balancierung der Optimierungsziele des Systems ab. Diese Gewichte werden in einer Bewertungsfunktion für List Scheduling-Algorithmen verwendet. Damit wird in einem Evaluationsszenario, welches aus einem fünfmal wiederholten Muster aus Anwendungen besteht, eine Reduzierung der Gesamtlaufzeit um 10,4%10,4\,\% bzw. 26,7s26,7\,s, des Energieverbrauchs um 4,7%4,7\,\% bzw. 2061,1J2061,1\,J und der maximalen Temperatur der GPU um 3,6%3,6\,\% bzw. 2,7K2,7 K erzielt. Lediglich die maximale Temperatur über alle CPU-Kerne erhöht sich um 6%6\,\% bzw. 2,3K2,3\,K. • Entwicklung von zwei Erweiterungen zur Verbesserung des dynamischen Task-Schedulings für einzelne und mehrere Prozesse, z.B. mehrere Laufzeitsysteminstanzen. Der erste Mechanismus, ein Ageing-Algorithmus, betrachtet nicht sicherheitskritische Systeme, welche Task-Prioritäten verwenden, um die unterschiedliche Bedeutung von Anwendungen darzustellen. Da es in solchen Anwendungsszenarien in Kombination mit hoher Systemauslastung zu Starvation kommen kann, passt der Mechanismus die Task-Prioritäten dynamisch an die aktuelle Auslastung und die Task-Wartezeiten an. Insgesamt erreicht dieser Mechanismus in zwei Bewertungsszenarien eine durchschnittliche Laufzeitverbesserung von 3,75%3,75\,\% und 3,16%3,16\,\% bei gleichzeitiger Reduzierung der Durchlaufzeit von Tasks mit niedrigerer Priorität um bis zu 25,67%25,67\,\%. Der zweite Mechanismus ermöglicht die Optimierung von Schedules mehrerer Laufzeitsysteminstanzen, die parallel auf demselben Rechenknoten ausgeführt werden. Dieser Co-Scheduling-Ansatz verwendet Shared Memory zum Austausch von Informationen zwischen den Prozessen und Simulated Annealing zur Berechnung neuer Task-Schedules. In zwei Evaluierungsszenarien erzielt der Mechanismus durchschnittliche Laufzeitverbesserungen von 19,74%19,74\,\% und 20,91%20,91\,\% bzw. etwa 2,7s2,7\,s und 3s3\,s
    corecore