6,340 research outputs found

    Fine recycled concrete aggregate as a material replacement in concrete production

    Get PDF
    As a fast and rapid growing nation, Malaysia undergoes a lot of development especially in construction field. Most of the building nowadays are being made mainly using concrete as it provides many favorable features such as satisfactory compressive strength, durability, availability, versatility and cost effectiveness. However, in pursuing the development era, sometimes the authorities overlooked about the construction and demolition (C&D) waste that had been created along the development progress. Construction and demolition waste is becoming a vital issue especially to the environmental aspect in many large cities in the world (Chen et al., 2002). Shen [1] describe C&D waste as the waste which generated from renovation, site clearing, demolition, construction, roadwork, land excavation and civil and building construction. Construction and Demolition (C&D) waste constitutes a major portion of total solid waste production in the world, and most of it is used in landfills .

    Embedded Sensor System for Early Pathology Detection in Building Construction

    Get PDF
    Structure pathology detection is an important security task in building construction, which is performed by an operator by looking manually for damages on the materials. This activity could be dangerous if the structure is hidden or difficult to reach. On the other hand, embedded devices and wireless sensor networks (WSN) are becoming popular and cheap, enabling the design of an alternative pathology detection system to monitor structures based on these technologies. This article introduces a ZigBee WSN system, intending to be autonomous, easy to use and with low power consumption. Its functional parts are fully discussed with diagrams, as well as the protocol used to collect samples from sensor nodes. Finally, several tests focused on range and power consumption of our prototype are shown, analysing whether the results obtained were as expected or not

    Implementing and Evaluating a Wireless Body Sensor System for Automated Physiological Data Acquisition at Home

    Full text link
    Advances in embedded devices and wireless sensor networks have resulted in new and inexpensive health care solutions. This paper describes the implementation and the evaluation of a wireless body sensor system that monitors human physiological data at home. Specifically, a waist-mounted triaxial accelerometer unit is used to record human movements. Sampled data are transmitted using an IEEE 802.15.4 wireless transceiver to a data logger unit. The wearable sensor unit is light, small, and consumes low energy, which allows for inexpensive and unobtrusive monitoring during normal daily activities at home. The acceleration measurement tests show that it is possible to classify different human motion through the acceleration reading. The 802.15.4 wireless signal quality is also tested in typical home scenarios. Measurement results show that even with interference from nearby IEEE 802.11 signals and microwave ovens, the data delivery performance is satisfactory and can be improved by selecting an appropriate channel. Moreover, we found that the wireless signal can be attenuated by housing materials, home appliances, and even plants. Therefore, the deployment of wireless body sensor systems at home needs to take all these factors into consideration.Comment: 15 page

    Disseny i construcció d'una sonda atmosfèrica

    Get PDF
    The project consists of the construction of a functional meteorological probe, controlled by an Arduino microcontroller. This probe was design to measure pressure and temperature as functions of the altitude. This device is the first of its kind built at the EETAC, thus a considerable effort of requirement definition has been done. In the present report we describe how all the probesystems were designed, and all the necessary components as well as the reason why they were chosen are described. The resulting design is modular in order to facilitate future improvements/expansions.The steps necessary for the assembly of all the components in a common structure are detailed, as well as the choice of tools and materials. All the systems developed were tested simulating conditions similar to those expected in the real mission.Finally, after the construction and validation processes, all the materials and the tasks needed to launch the probe up to at an altitude of 35 km are detailed.The present report is intended to serve as a guide for futuresimilar projects in EETAC. The resulting device from this work is named FourCast after our surnames

    Preparation of NiO catalyst on FeCrAI substrate using various techniques at higher oxidation process

    Get PDF
    The cheap nickel oxide (NiO) is a potential catalyst candidate to replace the expensive available platinum group metals (PGM). However, the current methods to adhere the NiO powder on the metallic substrates are complicated. Therefore, this work explored the development of nickel oxide using nickel (Ni) on FeCrAl substrate through the combination of nickel electroplating and oxidation process for catalytic converter application. The approach was started with assessment of various nickel electroplating process based on the weight gain during oxidation. Then, the next experiment used the best process in which the pre-treatment using the solution of SiC and/or Al2O3 in methanol. The specimens then were carried out to short term oxidation process using thermo gravimetric analysis (TGA) at 1000 o C. Meanwhile, the long term oxidation process was conducted using an automatic furnace at 900, 1000 and 1100 o C. The atomic force microscopy (AFM) was used for surface analysis in nanometer range scale. Meanwhile, roughness test was used for roughness measurement analysis in micrometer range scale. The scanning electron microscope (SEM) attached with energy dispersive X-ray (EDX) were used for surface and cross section morphology analysis. The specimen of FeCrAl treated using ultrasonic prior to nickel electroplating showed the lowest weight gain during oxidation. The surface area of specimens increased after ultrasonic treatment. The electroplating process improved the high temperature oxidation resistance. In short term oxidation process indicated that the ultrasonic with SiC provided the lower parabolic rate constant (kp) and the Al2O3 and NiO layers were also occurred. The Ni layer was totally disappeared and converted to NiO layer on FeCrAl surface after long term oxidation process. From this work, the ultrasonic treatment prior to nickel electroplating was the best method to adhere NiO on FeCrAl substrate
    • …
    corecore