74 research outputs found

    X3D Graphics for Web Authors, Getting Started with X3D

    Get PDF

    Integrating realistic human group behaviors into a networked 3D virtual environment

    Get PDF
    Distributed Interactive Simulation DIS-Java-VRML Working Group. Includes supplementary material provided from the contents of a CD-Rom issued containing the work of all three Working Group members and all supplementary material, in compressed format.Virtual humans operating inside large-scale virtual environments (VE) are typically controlled as single entities. Coordination of group activity and movement is usually the responsibility of their real world human controllers. Georeferencing coordinate systems, single-precision versus double-precision number representation and network delay requirements make group operations difficult. Mounting multiple humans inside shared or single vehicles, (i.e. air-assault operations, mechanized infantry operations, or small boat/riverine operations) with high fidelity is often impossible. The approach taken in this thesis is to reengineer the DIS-Java-VRML Capture the Flag game geolocated at Fort Irwin, California to allow the inclusion of human entities. Human operators are given the capability of aggregating or mounting nonhuman entities for coordinated actions. Additionally, rapid content creation of human entities is addressed through the development of a native tag set for the Humanoid Animation (H-Anim) 1.1 Specification in Extensible 3D (X3D). Conventions are demonstrated for integrating the DIS-Java-VRML and H-Anim draft standards using either VRML97 or X3D encodings. The result of this work is an interface to aggregate and control articulated humans using an existing model with a standardized motion library in a networked virtual environment. Virtual human avatars can be mounted and unmounted from aggregation entities. Simple demonstration examples show coordinated tactical maneuver among multiple humans with and without vehicles. Live 3D visualization of animated humanoids on realistic terrain is then portrayed inside freely available web browsers.Approved for public release; distribution is unlimited

    Extensible 3D (X3D) graphics for visualizing marine mammal reaction to underwater sound on the Southern California ASW Range (SOAR)

    Get PDF
    U.S. Navy use of sonar is essential for national defense, but its potential impacts on marine mammals are not well understood. Predictive models have been developed, but the need still exists for modeling actual marine mammal reaction during Navy exercises. The goal of this thesis is to develop a tool that can assimilate data collected from on-range exercises for visualizing and quantifying marine mammal reactions to underwater sound. In this thesis, X3D Graphics is used to model an acoustic source, as well as visualize acoustic and GPS tracking data collected during exercises. Generating geo-referenced, time synchronized 3D scenes of an August 2006 test, marine mammal positions and tracks of two research boats are displayed over realistic bathymetry. From a separate August 2004 experiment, acoustic transmissions and tracking of a training target are modeled. These demonstrate the essential components needed for visualization of marine mammal reactions during an ASW exercise. Potential future work includes utilizing this system to model multiple SOAR exercises, which will provide baseline data analyses to better understand marine mammal vulnerabilities and improve Navy mitigation procedures.http://archive.org/details/extensibledxdgra109453510US Navy (USN) author.Approved for public release; distribution is unlimited

    Integration of robotics and 3D visualization to modernize the Expeditionary Warfare Demonstrator (EWD)

    Get PDF
    In the summer of 2008, the Commandant of the Marine Corps (CMC) released a message to all Marines and Sailors detailing plans to revitalize U.S. naval amphibious competency. Current responsibilities in Iraq and Afghanistan have significantly reduced available training time causing overall amphibious readiness to suffer. In response, this thesis evaluates 3D visualization techniques and other virtual environment technologies available to support these mission-critical training goals. The focus of this research is to modernize the Expeditionary Warfare Demonstrator (EWD) located aboard Naval Amphibious Base (NAB) Little Creek, Virginia. The EWD has been used to demonstrate doctrine, tactics, and procedures for all phases of amphibious operations to large groups of Navy, Marine Corps, Joint, Coalition and civilian personnel for the last 55 years. However, it no longer reflects current doctrine and is therefore losing credibility and effectiveness. In its current configuration, the EWD is limited to a single training scenario since the display’s ship models rely on a static pulley system to show movement and the terrain display ashore is fixed. To address these shortfalls, this thesis first recommends the usage of the wireless communication capability within Sun’s Small Programmable Object Technology (SunSPOT) to create robotic vehicles to replace the current ship models. This enables large-group visualization and situational awareness of the numerous coordinated surface maneuvers needed to support Marines as they move from ship to shore. The second recommendation is to improve visualization ashore through the creation of Extensible 3D Graphics (X3D) scenes depicting high-fidelity 3D models and enhanced 3D terrain displays for any location. This thesis shows how to create these scenes and project them from overhead in order to modernize the gymnasium-sized EWD into an amphibious wargaming table suitable for both amphibious staff training and operational planning. Complimentary use of BASE-IT projection tables and digital 3D holography can further provide smallgroup, close-up views of key battlespace locations. It is now possible to upgrade an aging training tool by implementing the technologies recommended in this thesis to support the critical training and tactical needs of the integrated Navy and Marine Corps amphibious fighting force.http://archive.org/details/integrationofrob109454520Outstanding ThesisUS Marine Corps (USMC) author.Approved for public release; distribution is unlimited
    • …
    corecore