356 research outputs found

    Pulsar Timing and its Application for Navigation and Gravitational Wave Detection

    Full text link
    Pulsars are natural cosmic clocks. On long timescales they rival the precision of terrestrial atomic clocks. Using a technique called pulsar timing, the exact measurement of pulse arrival times allows a number of applications, ranging from testing theories of gravity to detecting gravitational waves. Also an external reference system suitable for autonomous space navigation can be defined by pulsars, using them as natural navigation beacons, not unlike the use of GPS satellites for navigation on Earth. By comparing pulse arrival times measured on-board a spacecraft with predicted pulse arrivals at a reference location (e.g. the solar system barycenter), the spacecraft position can be determined autonomously and with high accuracy everywhere in the solar system and beyond. We describe the unique properties of pulsars that suggest that such a navigation system will certainly have its application in future astronautics. We also describe the on-going experiments to use the clock-like nature of pulsars to "construct" a galactic-sized gravitational wave detector for low-frequency (f_GW ~1E-9 - 1E-7 Hz) gravitational waves. We present the current status and provide an outlook for the future.Comment: 30 pages, 9 figures. To appear in Vol 63: High Performance Clocks, Springer Space Science Review

    Experimental Validation of Pulse Phase Tracking for X-Ray Pulsar Based

    Get PDF
    Pulsars are a form of variable celestial source that have shown to be usable as aids for autonomous, deep space navigation. Particularly those sources emitting in the X-ray band are ideal for navigation due to smaller detector sizes. In this paper X-ray photons arriving from a pulsar are modeled as a non-homogeneous Poisson process. The method of pulse phase tracking is then investigated as a technique to measure the radial distance traveled by a spacecraft over an observation interval. A maximum-likelihood phase estimator (MLE) is used for the case where the observed frequency signal is constant. For the varying signal frequency case, an algorithm is used in which the observation window is broken up into smaller blocks over which an MLE is used. The outputs of this phase estimation process were then looped through a digital phase-locked loop (DPLL) in order to reduce the errors and produce estimates of the doppler frequency. These phase tracking algorithms were tested both in a computer simulation environment and using the NASA Goddard Space flight Center X-ray Navigation Laboratory Testbed (GXLT). This provided an experimental validation with photons being emitted by a modulated X-ray source and detected by a silicon-drift detector. Models of the Crab pulsar and the pulsar B1821-24 were used in order to generate test scenarios. Three different simulated detector trajectories were used to be tracked by the phase tracking algorithm: a stationary case, one with constant velocity, and one with constant acceleration. All three were performed in one-dimension along the line of sight to the pulsar. The first two had a constant signal frequency and the third had a time varying frequency. All of the constant frequency cases were processed using the MLE, and it was shown that they tracked the initial phase within 0.15% for the simulations and 2.5% in the experiments, based on an average of ten runs. The MLE-DPLL cascade version of the phase tracking algorithm was used in the varying frequency case. This resulted in tracking of the phase and frequency by the DPLL outputs in both the simulation and experimental environments. The crab pulsar was experimentally tested with a trajectory with a higher acceleration. In this case the phase error tended toward zero as the observation extended to 250 seconds and the doppler frequency error tended to zero in under 100 seconds

    Review of X-ray pulsar spacecraft autonomous navigation

    Full text link
    This article provides a review on X-ray pulsar-based navigation (XNAV). The review starts with the basic concept of XNAV, and briefly introduces the past, present and future projects concerning XNAV. This paper focuses on the advances of the key techniques supporting XNAV, including the navigation pulsar database, the X-ray detection system, and the pulse time of arrival estimation. Moreover, the methods to improve the estimation performance of XNAV are reviewed. Finally, some remarks on the future development of XNAV are provided.Comment: has been accepted by Chinese Journal of Aeronautic

    Predicted Performance of an X-Ray Navigation System for Future Deep Space and Lunar Missions

    Get PDF
    In November 2017, the NASA Goddard Space Flight Center (GSFC) Station Explorer for X-ray Timing and Navigation Technology (SEXTANT) experiment successfully demonstrated the feasibility of X-ray Pulsar Navigation (XNAV) as part of the Neutron Star Interior Composition Explorer (NICER) mission, which is an X-ray Astrophysics Mission of Opportunity currently operating onboard the International Space Station (ISS). XNAV provides a GPS-like absolute autonomous navigation and timing capability available anywhere in the Solar System and beyond. While the most significant benefits of XNAV are expected to come in support of very deep-space missions, the absolute autonomous navigation and timing capability also has utility for inner Solar System missions where increased autonomy or backup navigation and timing services are required, e.g., address loss of communication scenarios.The NASA commitment to develop a Gateway to support exploration of the Moon and eventually Mars, as well as current and future robotic missions such as James Webb Space Telescope (JWST), New Horizons, and much more, certainly will tax the existing ground based infrastructure in terms of availability. There- fore, an extended look at the feasibility and potential performance of XNAV for comparable missions is warranted. In this paper, we briefly review the XNAV concept and present case studies of its utility and performance for a Gateway orbit, Sun-Earth libration orbit, and a deep space transit trajectory

    Application of Pulsar-Based Navigation for Deep-Space CubeSats

    Get PDF
    This paper investigates the use of pulsar-based navigation for deep-space CubeSats. A novel approach for dealing with the onboard computation of navigational solutions and timekeeping capabilities of a spacecraft in a deep-space cruise is shown, and the related implementation and numerical simulations are discussed. The pulsar’s signal detection, processing, and exploitation are simulated for navigation onboard a spacecraft, thus showing the feasibility of autonomous state estimation in deep space even for miniaturized satellites

    PODIUM:A Pulsar Navigation Unit for Science Missions

    Full text link
    PODIUM is a compact spacecraft navigation unit, currently being designed to provide interplanetary missions with autonomous position and velocity estimations. The unit will make use of Pulsar X-ray observations to measure the distance and distance rate from the host spacecraft to the Solar System Barycenter. Such measurements will then be used by the onboard orbit determination function to estimate the complete orbital elements of the spacecraft. The design aims at 6 kg of mass and 20 W of power, in a volume of 150 mm by 240 mm by 600 mm. PODIUM is designed to minimize the impact on the mission operational and accommodation constraints. The architecture is based on a grazing incidence X-ray telescope with focal distance limited to 50 cm. The effective area shall be in the range 25 to 50 cm2 for photon energies in the range 0.2-10 keV, requiring nesting of several mirrors in the Wolter-1 geometry. Grazing incidence angles will be very small, below 2 deg. The current target FOV is 0.25 deg. The pulsars photon arrivals are detected with a single pixel Silicon Drift Detector (SDD) sensor with timing accuracy below 1usec. The unit has no gimbaling to meet the applicable power, size and mass requirements. Instead, the host spacecraft shall slew and point to allow pulsar observation. The avionics architecture is based on a radiation hardened LEON4 processor, to allow a synchronous propagation task and measurement generation and orbit determination step in an asynchronous task. PODIUM will enable higher autonomy and lower cost for interplanetary missions. L2 space observatories and planetary flybys are the current reference use cases. Onboard autonomous state estimation can reduce the ground support effort required for navigation and orbit correction/maintenance computation, and reduce the turnaround time, thus enabling more accurate maneuvers, reducing the orbit maintenance mass budget

    A relativistic positioning system exploiting pulsating sources for navigation across the Solar System and beyond

    Get PDF
    We introduce an operational approach to the use of pulsating sources, located at spatial infinity, for defining a relativistic positioning and navigation system, based on the use of null four-vectors in a flatMinkowskian spacetime. We describe our approach and discuss the validity of it and of the other approximations we have considered in actual physical situations. As a prototypical case, we show how pulsars can be used to define such a positioning system: the reception of the pulses for a set of different sources whose positions in the sky and periods are assumed to be known allows the determination of the user's coordinates and spacetime trajectory, in the reference frame where the sources are at rest. In order to confirm the viability of the method, we consider an application example reconstructing the world-line of an idealized Earth in the reference frame of distant pulsars: in particular we have simulated the arrival times of the signals fromfour pulsars at the location of the Parkes radiotelescope in Australia. After pointing out the simplifications we have made, we discuss the accuracy of the method. Eventually, we suggest that the method could actually be used for navigation across the Solar System and be based on artificial sources, rather than pulsar

    Bounds on gravitational wave backgrounds from large distance clock comparisons

    Full text link
    Our spacetime is filled with gravitational wave backgrounds that constitute a fluctuating environment created by astrophysical and cosmological sources. Bounds on these backgrounds are obtained from cosmological and astrophysical data but also by analysis of ranging and Doppler signals from distant spacecraft. We propose here a new way to set bounds on those backgrounds by performing clock comparisons between a ground clock and a remote spacecraft equipped with an ultra-stable clock, rather than only ranging to an onboard transponder. This technique can then be optimized as a function of the signal to be measured and the dominant noise sources, leading to significant improvements on present bounds in a promising frequency range where different theoretical models are competing. We illustrate our approach using the SAGAS project which aims to fly an ultra stable optical clock in the outer solar system.Comment: 10 pages, 8 figures, minor amendment
    corecore