13,312 research outputs found

    A low-power network search engine based on statistical partitioning

    Get PDF
    Network search engines based on Ternary CAMs are widely used in routers. However, due to parallel search nature of TCAMs power consumption becomes a critical issue. In this work we propose an architecture that partitions the lookup table into multiple TCAM chips based on individual TCAM cell status and achieves lower power figures

    A Multifunctional Processing Board for the Fast Track Trigger of the H1 Experiment

    Get PDF
    The electron-proton collider HERA is being upgraded to provide higher luminosity from the end of the year 2001. In order to enhance the selectivity on exclusive processes a Fast Track Trigger (FTT) with high momentum resolution is being built for the H1 Collaboration. The FTT will perform a 3-dimensional reconstruction of curved tracks in a magnetic field of 1.1 Tesla down to 100 MeV in transverse momentum. It is able to reconstruct up to 48 tracks within 23 mus in a high track multiplicity environment. The FTT consists of two hardware levels L1, L2 and a third software level. Analog signals of 450 wires are digitized at the first level stage followed by a quick lookup of valid track segment patterns. For the main processing tasks at the second level such as linking, fitting and deciding, a multifunctional processing board has been developed by the ETH Zurich in collaboration with Supercomputing Systems (Zurich). It integrates a high-density FPGA (Altera APEX 20K600E) and four floating point DSPs (Texas Instruments TMS320C6701). This presentation will mainly concentrate on second trigger level hardware aspects and on the implementation of the algorithms used for linking and fitting. Emphasis is especially put on the integrated CAM (content addressable memory) functionality of the FPGA, which is ideally suited for implementing fast search tasks like track segment linking.Comment: 6 pages, 4 figures, submitted to TN

    A Case for Time Slotted Channel Hopping for ICN in the IoT

    Full text link
    Recent proposals to simplify the operation of the IoT include the use of Information Centric Networking (ICN) paradigms. While this is promising, several challenges remain. In this paper, our core contributions (a) leverage ICN communication patterns to dynamically optimize the use of TSCH (Time Slotted Channel Hopping), a wireless link layer technology increasingly popular in the IoT, and (b) make IoT-style routing adaptive to names, resources, and traffic patterns throughout the network--both without cross-layering. Through a series of experiments on the FIT IoT-LAB interconnecting typical IoT hardware, we find that our approach is fully robust against wireless interference, and almost halves the energy consumed for transmission when compared to CSMA. Most importantly, our adaptive scheduling prevents the time-slotted MAC layer from sacrificing throughput and delay

    TARANET: Traffic-Analysis Resistant Anonymity at the NETwork layer

    Full text link
    Modern low-latency anonymity systems, no matter whether constructed as an overlay or implemented at the network layer, offer limited security guarantees against traffic analysis. On the other hand, high-latency anonymity systems offer strong security guarantees at the cost of computational overhead and long delays, which are excessive for interactive applications. We propose TARANET, an anonymity system that implements protection against traffic analysis at the network layer, and limits the incurred latency and overhead. In TARANET's setup phase, traffic analysis is thwarted by mixing. In the data transmission phase, end hosts and ASes coordinate to shape traffic into constant-rate transmission using packet splitting. Our prototype implementation shows that TARANET can forward anonymous traffic at over 50~Gbps using commodity hardware
    • …
    corecore