6,121 research outputs found

    Writer Identification Using Inexpensive Signal Processing Techniques

    Full text link
    We propose to use novel and classical audio and text signal-processing and otherwise techniques for "inexpensive" fast writer identification tasks of scanned hand-written documents "visually". The "inexpensive" refers to the efficiency of the identification process in terms of CPU cycles while preserving decent accuracy for preliminary identification. This is a comparative study of multiple algorithm combinations in a pattern recognition pipeline implemented in Java around an open-source Modular Audio Recognition Framework (MARF) that can do a lot more beyond audio. We present our preliminary experimental findings in such an identification task. We simulate "visual" identification by "looking" at the hand-written document as a whole rather than trying to extract fine-grained features out of it prior classification.Comment: 9 pages; 1 figure; presented at CISSE'09 at http://conference.cisse2009.org/proceedings.aspx ; includes the the application source code; based on MARF described in arXiv:0905.123

    Computationally Inexpensive Sequential Forward Floating Selection for Acquiring Significant Features for Authorship Invarianceness in Writer Identification

    Get PDF
    Handwriting is individualistic. The uniqueness of shape and style of handwriting can be used to identify the significant features in authenticating the author of writing. Acquiring these significant features leads to an important research in Writer Identification domain where to find the unique features of individual which also known as Individuality of Handwriting. This paper proposes an improved Sequential Forward Floating Selection method besides the exploration of significant features for invarianceness of authorship from global shape features by using various wrapper feature selection methods. The promising results show that the proposed method is worth to receive further exploration in identifying the handwritten authorship

    Uranium exploration methodology in cold climates

    Get PDF
    The uranium prospecting boom of the past decade had, as a major consequence, the rapid development and proliferation of exploration methods for source materials. Numerous established methods were developed and refined whilst new techniques were introduced proving, in some instances, to be highly successful. To the explorationist the proliferation of instrumental hardware and detection systems was something of a headache with the result that in uranium exploration, more so than in other types of prospecting, the choice of exploration method at the appropriate stage of prospecting was frequently ill founded. The situation also spawned ‘black box’ purveyors who made extravagant claims for their equipment. Money was wasted through over kill applications of exploration method accompanied in many instances by deficiencies in the interpretation of results. This project was originally conceived as a means of evaluating, reviewing and filtering from a burgeoning array of systems the most appropriate exploration techniques applicable to cold climate environments. This goal has been trimmed somewhat since it had been hoped to incorporate site investigation data assembled in the field by the writer as appropriate case history material. This was not possible and as a consequence this report is a 'state of the art review' of the applicability of currently available techniques in Arctic and Subarctic environments. Reference is made to published case history data, where appropriate, supportive of the techniques or methods reviewed.Abstract -- Introduction -- Prospecting methods in relation to Arctic and Subarctic environments -- Review of direct exploration methods -- Radiometric methods -- Airborne spectrometry -- Car borne and hand held instrumentation -- Geochemical methods -- Soil and stream sediment methods -- Geobotanical methods -- Water sampling - Hydrogeochemical methods -- Other metods -- Optimal exploration method selection -- References -- Table of exploration methods discussed in this report

    Facial Expression Recognition Based on Deep Learning Convolution Neural Network: A Review

    Get PDF
    Facial emotional processing is one of the most important activities in effective calculations, engagement with people and computers, machine vision, video game testing, and consumer research. Facial expressions are a form of nonverbal communication, as they reveal a person's inner feelings and emotions. Extensive attention to Facial Expression Recognition (FER) has recently been received as facial expressions are considered. As the fastest communication medium of any kind of information. Facial expression recognition gives a better understanding of a person's thoughts or views and analyzes them with the currently trending deep learning methods. Accuracy rate sharply compared to traditional state-of-the-art systems. This article provides a brief overview of the different FER fields of application and publicly accessible databases used in FER and studies the latest and current reviews in FER using Convolution Neural Network (CNN) algorithms. Finally, it is observed that everyone reached good results, especially in terms of accuracy, with different rates, and using different data sets, which impacts the results

    Brain Computer Interface for Micro-controller Driven Robot Based on Emotiv Sensors

    Get PDF
    A Brain Computer Interface (BCI) is developed to navigate a micro-controller based robot using Emotiv sensors. The BCI system has a pipeline of 5 stages- signal acquisition, pre-processing, feature extraction, classification and CUDA inter- facing. It shall aid in serving a prototype for physical movement of neurological patients who are unable to control or operate on their muscular movements. All stages of the pipeline are designed to process bodily actions like eye blinks to command navigation of the robot. This prototype works on features learning and classification centric techniques using support vector machine. The suggested pipeline, ensures successful navigation of a robot in four directions in real time with accuracy of 93 percent

    Evaluation of LANDSAT-2 (ERTS) images applied to geologic structures and mineral resources of South America

    Get PDF
    The author has identified the following significant results. Work with the Image 100 clearly demonstrates that radiance values of LANDSAT data can be used for correlation of geologic formations across international boundaries. The Totora Formation of the Corocoro Group of Tertiary age was traced from known outcrops near Tiahuanaco, Bolivia, along the south side of Lake Titicaca westward into Peru where the same rocks are considered to be Cretaceous in age. This inconsistency suggests: (1) that a review of this formation is needed by joint geological surveys of both countries to determine similarities, differences, and the true age; (2) that recognition of the extension of the copper-bearing Totora Formation of Bolivia into Peru may provide Peru with a new target for exploration. Equal radiance maps made by use of the Image 100 system show as many as eight different units within salar deposits (salt flats) of the Bolivian Altiplano. Standard film processed images show them as nearly uniform areas of white because of lack of dynamic range in film products. The Image 100 system, therefore, appears to be of great assistance in subdividing the salt flats on the basis of moisture distribution, surface roughness, and distribution of windblown materials. Field work is needed to determine these relationships to mineral composition and distribution. Images representing seasonal changes should also improve the accuracy of such maps. Radiance values of alteration zones related to the occurrence of porphyry copper ores were measured at the San Juan del Abra deposit of northern Chile using the Image 100 system. The extent to which these same values may be used to detect similar alteration zones in other areas has not yet been tested

    A New Swarm-Based Framework for Handwritten Authorship Identification in Forensic Document Analysis

    Get PDF
    Feature selection has become the focus of research area for a long time due to immense consumption of high-dimensional data. Originally, the purpose of feature selection is to select the minimally sized subset of features class distribution which is as close as possible to original class distribution. However in this chapter, feature selection is used to obtain the unique individual significant features which are proven very important in handwriting analysis of Writer Identification domain. Writer Identification is one of the areas in pattern recognition that have created a center of attention by many researchers to work in due to the extensive exchange of paper documents. Its principal point is in forensics and biometric application as such the writing style can be used as bio-metric features for authenticating the identity of a writer. Handwriting style is a personal to individual and it is implicitly represented by unique individual significant features that are hidden in individual’s handwriting. These unique features can be used to identify the handwritten authorship accordingly. The use of feature selection as one of the important machine learning task is often disregarded in Writer Identification domain, with only a handful of studies implemented feature selection phase. The key concern in Writer Identification is in acquiring the features reflecting the author of handwriting. Thus, it is an open question whether the extracted features are optimal or near-optimal to identify the author. Therefore, feature extraction and selection of the unique individual significant features are very important in order to identify the writer, moreover to improve the classification accuracy. It relates to invarianceness of authorship where invarianceness between features for intra-class (same writer) is lower than inter-class (different writer). Many researches have been done to develop algorithms for extracting good features that can reflect the authorship with good performance. This chapter instead focuses on identifying the unique individual significant features of word shape by using feature selection method prior the identification task. In this chapter, feature selection is explored in order to find the most unique individual significant features which are the unique features of individual’s writing. This chapter focuses on the integration of Swarm Optimized and Computationally Inexpensive Floating Selection (SOCIFS) feature selection technique into the proposed hybrid of Writer Identification framework 386 S.F. Pratama et al. and feature selection framework, namely Cheap Computational Cost Class-Specific Swarm Sequential Selection (C4S4). Experiments conducted to proof the validity and feasibility of the proposed framework using dataset from IAM Database by comparing the proposed framework to the existing Writer Identification framework and various feature selection techniques and frameworks yield satisfactory results. The results show the proposed framework produces the best result with 99.35% classification accuracy. The promising outcomes are opening the gate to future explorations in Writer Identification domain specifically and other domains generally
    • …
    corecore