4,111 research outputs found

    Preliminary study on activity monitoring using an android smart-watch

    Get PDF
    The global trend for increasing life expectancy is resulting in aging populations in a number of countries. This brings to bear a pressure to provide effective care for the older population with increasing constraints on available resources. Providing care for and maintaining the independence of an older person in their own home is one way that this problem can be addressed. The EU Funded Unobtrusive Smart Environments for Independent Living (USEFIL) project is an assistive technology tool being developed to enhance independent living. As part of USEFIL, a wrist wearable unit (WWU) is being developed to monitor the physical activity (PA) of the user and integrate with the USEFIL system. The WWU is a novel application of an existing technology to the assisted living problem domain. It combines existing technologies and new algorithms to extract PA parameters for activity monitoring. The parameters that are extracted include: activity level, step count and worn state. The WWU, the algorithms that have been developed and a preliminary validation are presented. The results show that activity level can be successfully extracted, that worn state can be correctly identified and that step counts in walking data can be estimated within 3% error, using the controlled dataset

    A review of activity trackers for senior citizens: research perspectives, commercial landscape and the role of the insurance industry

    Get PDF
    The objective assessment of physical activity levels through wearable inertial-based motion detectors for the automatic, continuous and long-term monitoring of people in free-living environments is a well-known research area in the literature. However, their application to older adults can present particular constraints. This paper reviews the adoption of wearable devices in senior citizens by describing various researches for monitoring physical activity indicators, such as energy expenditure, posture transitions, activity classification, fall detection and prediction, gait and balance analysis, also by adopting consumer-grade fitness trackers with the associated limitations regarding acceptability. This review also describes and compares existing commercial products encompassing activity trackers tailored for older adults, thus providing a comprehensive outlook of the status of commercially available motion tracking systems. Finally, the impact of wearable devices on life and health insurance companies, with a description of the potential benefits for the industry and the wearables market, was analyzed as an example of the potential emerging market drivers for such technology in the future

    Evaluation of Pedometer Performance Across Multiple Gait Types Using Video for Ground Truth

    Get PDF
    This dissertation is motivated by improving healthcare through the development of wearable sensors. This work seeks improvement in the evaluation and development of pedometer algorithms, and is composed of two chapters describing the collection of the dataset and describing the im-plementation and evaluation of three previously developed pedometer algorithms on the dataset collected. Our goal is to analyze pedometer algorithms under more natural conditions that occur during daily living where gaits are frequently changing or remain regular for only brief periods of time. We video recorded 30 participants performing 3 activities: walking around a track, walking through a building, and moving around a room. The ground truth time of each step was manu-ally marked in the accelerometer signals through video observation. Collectively 60,853 steps were recorded and annotated. A subclass of steps called shifts were identiļ¬ed as those occurring at the beginning and end of regular strides, during gait changes, and during pivots changing the direction of motion. While shifts comprised only .03% of steps in the regular stride activity, they comprised 10-25% of steps in the semi-regular and unstructured activities. We believe these motions should be identiļ¬ed separately, as they provide diļ¬€erent accelerometer signals, and likely result in diļ¬€erent amounts of energy expenditure. This dataset will be the ļ¬rst to speciļ¬cally allow for pedometer algorithms to be evaluated on unstructured gaits that more closely model natural activities. In order to provide pilot evaluation data, a commercial pedometer, the Fitbit Charge 2, and three prior step detection algorithms were analyzed. The Fitbit consistently underestimated the total number of steps taken across each gait type. Because the Fitbit algorithm is proprietary, it could not be reimplemented and examined beyond a raw step count comparison. Three previously published step detection algorithms, however, were implemented and examined in detail on the dataset. The three algorithms are based on three diļ¬€erent methods of step detection; peak detection, zero crossing (threshold based), and autocorrelation. The evaluation of these algorithms was performed across 5 dimensions, including algorithm, parameter set, gait type, sensor position, and evaluation metric, which yielded 108 individual measures of accuracy. Accuracy across each of the 5 dimensions were examined individually in order to determine trends. In general, training parameters to this dataset caused a signiļ¬cant accuracy improvement. The most accurate algorithm was dependent on gait type, sensor position, and evaluation metric, indicating no clear ā€œbest approachā€ to step detection. In general, algorithms were most accurate for regular gait and least accurate for unstructured gait. In general, accuracy was higher for hip and ankle worn sensors than it was for wrist worn sensors. Finally, evaluation across running count accuracy (RCA) and step detection accuracy (SDA) revealed similar trends across gait type and sensor position, but each metric indicated a diļ¬€erent algorithm with the highest overall accuracy. A classiļ¬er was developed to identify gait type in an eļ¬€ort to use this information to improve pedometer accuracy. The classiļ¬erā€™s features are based on the Fast Fourier Transform (FFT) applied to the accelerometer data gathered from each sensor throughout each activity. A peak detector was developed to identify the maximum value of the FFT, the width of the peak yielding the maximum value, and the number of peaks in each FFT. These features were then applied to a Naive Bayes classiļ¬er, which correctly identiļ¬ed the gait (regular, semi-regular, or unstructured) with 84% accuracy. A varying algorithm pedometer was then developed which switched between the peak detection, threshold crossing, and autocorrelation based algorithms depending on which algorithm performed best for the sensor location and detected gait type. This process yielded a step detection accuracy of 84%. This was a 3% improvement when compared to the greatest accuracy achieved by the best performing algorithm, the peak detection algorithm. It was also identiļ¬ed that in order to provide quicker real-time transitions between algorithms, the data should be examined in smaller windows. Window sizes of 3, 5, 8, 10, 15, 20, and 30 seconds were tested, and the highest overall accuracy was found for a window size of 5 seconds. These smaller windows of time included behaviors which do not correspond directly with the regular, semi-regular, and unstructured gait activities. Instead, three stride types were identiļ¬ed: steady stride, irregular stride, and idle. These stride types were identiļ¬ed with 82% accuracy. This experiment showed that at an activity level, gait detection can improve pedometer accuracy and indicated that applying the same principles to a smaller window size could allow for more responsive real-time algorithm selection

    A Review of Accelerometry-Based Wearable Motion Detectors for Physical Activity Monitoring

    Get PDF
    Characteristics of physical activity are indicative of oneā€™s mobility level, latent chronic diseases and aging process. Accelerometers have been widely accepted as useful and practical sensors for wearable devices to measure and assess physical activity. This paper reviews the development of wearable accelerometry-based motion detectors. The principle of accelerometry measurement, sensor properties and sensor placements are first introduced. Various research using accelerometry-based wearable motion detectors for physical activity monitoring and assessment, including posture and movement classification, estimation of energy expenditure, fall detection and balance control evaluation, are also reviewed. Finally this paper reviews and compares existing commercial products to provide a comprehensive outlook of current development status and possible emerging technologies

    A Study on Human Fall Detection Systems: Daily Activity Classification and Sensing Techniques

    Get PDF
    Fall detection for elderly is a major topic as far as assistive technologies are concerned. This is due to the high demand for the products and technologies related to fall detection with the ageing population around the globe. This paper gives a review of previous works on human fall detection devices and a preliminary results from a developing depth sensor based device. The three main approaches used in fall detection devices such as wearable based devices, ambient based devices and vision based devices are identified along with the sensors employed. ƂĀ The frameworks and algorithms applied in each of the approaches and their uniqueness is also illustrated. After studying the performance and the shortcoming of the available systems a future solution using depth sensor is also proposed with preliminary results

    Technology for monitoring everyday prosthesis use: a systematic review

    Get PDF
    BACKGROUND Understanding how prostheses are used in everyday life is central to the design, provision and evaluation of prosthetic devices and associated services. This paper reviews the scientific literature on methodologies and technologies that have been used to assess the daily use of both upper- and lower-limb prostheses. It discusses the types of studies that have been undertaken, the technologies used to monitor physical activity, the benefits of monitoring daily living and the barriers to long-term monitoring. METHODS A systematic literature search was conducted in PubMed, Web of Science, Scopus, CINAHL and EMBASE of studies that monitored the activity of prosthesis-users during daily-living. RESULTS 60 lower-limb studies and 9 upper-limb studies were identified for inclusion in the review. The first studies in the lower-limb field date from the 1990s and the number has increased steadily since the early 2000s. In contrast, the studies in the upper-limb field have only begun to emerge over the past few years. The early lower-limb studies focused on the development or validation of actimeters, algorithms and/or scores for activity classification. However, most of the recent lower-limb studies used activity monitoring to compare prosthetic components. The lower-limb studies mainly used step-counts as their only measure of activity, focusing on the amount of activity, not the type and quality of movements. In comparison, the small number of upper-limb studies were fairly evenly spread between development of algorithms, comparison of everyday activity to clinical scores, and comparison of different prosthesis user populations. Most upper-limb papers reported the degree of symmetry in activity levels between the arm with the prosthesis and the intact arm. CONCLUSIONS Activity monitoring technology used in conjunction with clinical scores and user feedback, offers significant insights into how prostheses are used and whether they meet the userā€™s requirements. However, the cost, limited battery-life and lack of availability in many countries mean that using sensors to understand the daily use of prostheses and the types of activity being performed has not yet become a feasible standard clinical practice. This review provides recommendations for the research and clinical communities to advance this area for the benefit of prosthesis users

    Wearable Movement Sensors for Rehabilitation: From Technology to Clinical Practice

    Get PDF
    This Special Issue shows a range of potential opportunities for the application of wearable movement sensors in motor rehabilitation. However, the papers surely do not cover the whole field of physical behavior monitoring in motor rehabilitation. Most studies in this Special Issue focused on the technical validation of wearable sensors and the development of algorithms. Clinical validation studies, studies applying wearable sensors for the monitoring of physical behavior in daily life conditions, and papers about the implementation of wearable sensors in motor rehabilitation are under-represented in this Special Issue. Studies investigating the usability and feasibility of wearable movement sensors in clinical populations were lacking. We encourage researchers to investigate the usability, acceptance, feasibility, reliability, and clinical validity of wearable sensors in clinical populations to facilitate the application of wearable movement sensors in motor rehabilitation
    • ā€¦
    corecore