39 research outputs found

    Wreath Products of Forest Algebras, with Applications to Tree Logics

    Full text link
    We use the recently developed theory of forest algebras to find algebraic characterizations of the languages of unranked trees and forests definable in various logics. These include the temporal logics CTL and EF, and first-order logic over the ancestor relation. While the characterizations are in general non-effective, we are able to use them to formulate necessary conditions for definability and provide new proofs that a number of languages are not definable in these logics

    EF+EX Forest Algebras

    Full text link
    We examine languages of unranked forests definable using the temporal operators EF and EX. We characterize the languages definable in this logic, and various fragments thereof, using the syntactic forest algebras introduced by Bojanczyk and Walukiewicz. Our algebraic characterizations yield efficient algorithms for deciding when a given language of forests is definable in this logic. The proofs are based on understanding the wreath product closures of a few small algebras, for which we introduce a general ideal theory for forest algebras. This combines ideas from the work of Bojanczyk and Walukiewicz for the analogous logics on binary trees and from early work of Stiffler on wreath product of finite semigroups

    Piecewise testable tree languages

    Get PDF
    This paper presents a decidable characterization of tree languages that can be defined by a boolean combination of Sigma_1 sentences. This is a tree extension of the Simon theorem, which says that a string language can be defined by a boolean combination of Sigma_1 sentences if and only if its syntactic monoid is J-trivial

    Deciding definability in FO2(<h,<v) on trees

    Get PDF
    We provide a decidable characterization of regular forest languages definable in FO2(<h,<v). By FO2(<h,<v) we refer to the two variable fragment of first order logic built from the descendant relation and the following sibling relation. In terms of expressive power it corresponds to a fragment of the navigational core of XPath that contains modalities for going up to some ancestor, down to some descendant, left to some preceding sibling, and right to some following sibling. We also show that our techniques can be applied to other two variable first-order logics having exactly the same vertical modalities as FO2(<h,<v) but having different horizontal modalities
    corecore