5,347 research outputs found

    Machine Learning and Integrative Analysis of Biomedical Big Data.

    Get PDF
    Recent developments in high-throughput technologies have accelerated the accumulation of massive amounts of omics data from multiple sources: genome, epigenome, transcriptome, proteome, metabolome, etc. Traditionally, data from each source (e.g., genome) is analyzed in isolation using statistical and machine learning (ML) methods. Integrative analysis of multi-omics and clinical data is key to new biomedical discoveries and advancements in precision medicine. However, data integration poses new computational challenges as well as exacerbates the ones associated with single-omics studies. Specialized computational approaches are required to effectively and efficiently perform integrative analysis of biomedical data acquired from diverse modalities. In this review, we discuss state-of-the-art ML-based approaches for tackling five specific computational challenges associated with integrative analysis: curse of dimensionality, data heterogeneity, missing data, class imbalance and scalability issues

    Feature Selection and Dimensionality Reduction in Genomics and Proteomics

    Get PDF
    International audienceFinding reliable, meaningful patterns in data with high numbers of attributes can be extremely difficult. Feature selection helps us to decide what attributes or combination of attributes are most important for finding these patterns. In this chapter, we study feature selection methods for building classification models from high-throughput genomic (microarray) and proteomic (mass spectrometry) data sets. Thousands of feature candidates must be analyzed, compared and combined in such data sets. We describe the basics of four different approaches used for feature selection and illustrate their effects on an MS cancer proteomic data set. The closing discussion provides assistance in performing an analysis in high-dimensional genomic and proteomic data

    Wrapper algorithms and their performance assessment on high-dimensional molecular data

    Get PDF
    Prediction problems on high-dimensional molecular data, e.g. the classification of microar- ray samples into normal and cancer tissues, are complex and ill-posed since the number of variables usually exceeds the number of observations by orders of magnitude. Recent research in the area has propagated a variety of new statistical models in order to handle these new biological datasets. In practice, however, these models are always applied in combination with preprocessing and variable selection methods as well as model selection which is mostly performed by cross-validation. Varma and Simon (2006) have used the term ‘wrapper-algorithm’ for this integration of preprocessing and model selection into the construction of statistical models. Additionally, they have proposed the method of nested cross-validation (NCV) as a way of estimating their prediction error which has evolved to the gold-standard by now. In the first part, this thesis provides further theoretical and empirical justification for the usage of NCV in the context of wrapper-algorithms. Moreover, a computationally less intensive alternative to NCV is proposed which can be motivated in a decision theoretic framework. The new method can be interpreted as a smoothed variant of NCV and, in contrast to NCV, guarantees intuitive bounds for the estimation of the prediction error. The second part focuses on the ranking of wrapper algorithms. Cross-study-validation is proposed as an alternative concept to the repetition of separated within-study-validations if several similar prediction problems are available. The concept is demonstrated using six different wrapper algorithms for survival prediction on censored data on a selection of eight breast cancer datasets. Additionally, a parametric bootstrap approach for simulating realistic data from such related prediction problems is described and subsequently applied to illustrate the concept of cross-study-validation for the ranking of wrapper algorithms. Eventually, the last part approaches computational aspects of the analyses and simula- tions performed in the thesis. The preprocessing before the analysis as well as the evaluation of the prediction models requires the usage of large computing resources. Parallel comput- ing approaches are illustrated on cluster, cloud and high performance computing resources using the R programming language. Usage of heterogeneous hardware and processing of large datasets are covered as well as the implementation of the R-package survHD for the analysis and evaluation of high-dimensional wrapper algorithms for survival prediction from censored data.Prädiktionsprobleme für hochdimensionale genetische Daten, z.B. die Klassifikation von Proben in normales und Krebsgewebe, sind komplex und unterbestimmt, da die Anzahl der Variablen die Anzahl der Beobachtungen um ein Vielfaches übersteigt. Die Forschung hat auf diesem Gebiet in den letzten Jahren eine Vielzahl an neuen statistischen Meth- oden hervorgebracht. In der Praxis werden diese Algorithmen jedoch stets in Kombination mit Vorbearbeitung und Variablenselektion sowie Modellwahlverfahren angewandt, wobei letztere vorwiegend mit Hilfe von Kreuzvalidierung durchgeführt werden. Varma und Simon (2006) haben den Begriff ’Wrapper-Algorithmus’ für eine derartige Einbet- tung von Vorbearbeitung und Modellwahl in die Konstruktion einer statistischen Methode verwendet. Zudem haben sie die genestete Kreuzvalidierung (NCV) als eine Methode zur Sch ̈atzung ihrer Fehlerrate eingeführt, welche sich mittlerweile zum Goldstandard entwickelt hat. Im ersten Teil dieser Doktorarbeit, wird eine tiefergreifende theoretische Grundlage sowie eine empirische Rechtfertigung für die Anwendung von NCV bei solchen ’Wrapper-Algorithmen’ vorgestellt. Außerdem wird eine alternative, weniger computerintensive Methode vorgeschlagen, welche im Rahmen der Entscheidungstheorie motiviert wird. Diese neue Methode kann als eine gegl ̈attete Variante von NCV interpretiert wer- den und hält im Gegensatz zu NCV intuitive Grenzen bei der Fehlerratenschätzung ein. Der zweite Teil behandelt den Vergleich verschiedener ’Wrapper-Algorithmen’ bzw. das Sch ̈atzen ihrer Reihenfolge gem ̈aß eines bestimmten Gütekriteriums. Als eine Alterna- tive zur wiederholten Durchführung von Kreuzvalidierung auf einzelnen Datensätzen wird das Konzept der studienübergreifenden Validierung vorgeschlagen. Das Konzept wird anhand von sechs verschiedenen ’Wrapper-Algorithmen’ für die Vorhersage von Uberlebenszeiten bei acht Brustkrebsstudien dargestellt. Zusätzlich wird ein Bootstrapverfahren beschrieben, mit dessen Hilfe man mehrere realistische Datens ̈atze aus einer Menge von solchen verwandten Prädiktionsproblemen generieren kann. Der letzte Teil beleuchtet schließlich computationale Verfahren, die bei der Umsetzung der Analysen in dieser Dissertation eine tragende Rolle gespielt haben. Die Vorbearbeitungsschritte sowie die Evaluation der Prädiktionsmodelle erfordert die extensive Nutzung von Computerressourcen. Es werden Ansätze zum parallelen Rechnen auf Cluster-, Cloud- und Hochleistungsrechen- ressourcen unter der Verwendung der Programmiersprache R beschrieben. Die Benutzung von heterogenen Hardwarearchitekturen, die Verarbeitung von großen Datensätzen sowie die Entwicklung des R-Pakets survHD für die Analyse und Evaluierung von ’Wrapper- Algorithmen’ zur Uberlebenszeitenanalyse werden thematisiert

    Outcome prediction based on microarray analysis: a critical perspective on methods

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Information extraction from microarrays has not yet been widely used in diagnostic or prognostic decision-support systems, due to the diversity of results produced by the available techniques, their instability on different data sets and the inability to relate statistical significance with biological relevance. Thus, there is an urgent need to address the statistical framework of microarray analysis and identify its drawbacks and limitations, which will enable us to thoroughly compare methodologies under the same experimental set-up and associate results with confidence intervals meaningful to clinicians. In this study we consider gene-selection algorithms with the aim to reveal inefficiencies in performance evaluation and address aspects that can reduce uncertainty in algorithmic validation.</p> <p>Results</p> <p>A computational study is performed related to the performance of several gene selection methodologies on publicly available microarray data. Three basic types of experimental scenarios are evaluated, i.e. the independent test-set and the 10-fold cross-validation (CV) using maximum and average performance measures. Feature selection methods behave differently under different validation strategies. The performance results from CV do not mach well those from the independent test-set, except for the support vector machines (SVM) and the least squares SVM methods. However, these wrapper methods achieve variable (often low) performance, whereas the hybrid methods attain consistently higher accuracies. The use of an independent test-set within CV is important for the evaluation of the predictive power of algorithms. The optimal size of the selected gene-set also appears to be dependent on the evaluation scheme. The consistency of selected genes over variation of the training-set is another aspect important in reducing uncertainty in the evaluation of the derived gene signature. In all cases the presence of outlier samples can seriously affect algorithmic performance.</p> <p>Conclusion</p> <p>Multiple parameters can influence the selection of a gene-signature and its predictive power, thus possible biases in validation methods must always be accounted for. This paper illustrates that independent test-set evaluation reduces the bias of CV, and case-specific measures reveal stability characteristics of the gene-signature over changes of the training set. Moreover, frequency measures on gene selection address the algorithmic consistency in selecting the same gene signature under different training conditions. These issues contribute to the development of an objective evaluation framework and aid the derivation of statistically consistent gene signatures that could eventually be correlated with biological relevance. The benefits of the proposed framework are supported by the evaluation results and methodological comparisons performed for several gene-selection algorithms on three publicly available datasets.</p

    Novel Methods of Biomarker Discovery and Predictive Modeling using Random Forest

    Get PDF
    abstract: Random forest (RF) is a popular and powerful technique nowadays. It can be used for classification, regression and unsupervised clustering. In its original form introduced by Leo Breiman, RF is used as a predictive model to generate predictions for new observations. Recent researches have proposed several methods based on RF for feature selection and for generating prediction intervals. However, they are limited in their applicability and accuracy. In this dissertation, RF is applied to build a predictive model for a complex dataset, and used as the basis for two novel methods for biomarker discovery and generating prediction interval. Firstly, a biodosimetry is developed using RF to determine absorbed radiation dose from gene expression measured from blood samples of potentially exposed individuals. To improve the prediction accuracy of the biodosimetry, day-specific models were built to deal with day interaction effect and a technique of nested modeling was proposed. The nested models can fit this complex data of large variability and non-linear relationships. Secondly, a panel of biomarkers was selected using a data-driven feature selection method as well as handpick, considering prior knowledge and other constraints. To incorporate domain knowledge, a method called Know-GRRF was developed based on guided regularized RF. This method can incorporate domain knowledge as a penalized term to regulate selection of candidate features in RF. It adds more flexibility to data-driven feature selection and can improve the interpretability of models. Know-GRRF showed significant improvement in cross-species prediction when cross-species correlation was used to guide selection of biomarkers. The method can also compete with existing methods using intrinsic data characteristics as alternative of domain knowledge in simulated datasets. Lastly, a novel non-parametric method, RFerr, was developed to generate prediction interval using RF regression. This method is widely applicable to any predictive models and was shown to have better coverage and precision than existing methods on the real-world radiation dataset, as well as benchmark and simulated datasets.Dissertation/ThesisDoctoral Dissertation Biomedical Informatics 201

    Inferential stability in systems biology

    Get PDF
    The modern biological sciences are fraught with statistical difficulties. Biomolecular stochasticity, experimental noise, and the “large p, small n” problem all contribute to the challenge of data analysis. Nevertheless, we routinely seek to draw robust, meaningful conclusions from observations. In this thesis, we explore methods for assessing the effects of data variability upon downstream inference, in an attempt to quantify and promote the stability of the inferences we make. We start with a review of existing methods for addressing this problem, focusing upon the bootstrap and similar methods. The key requirement for all such approaches is a statistical model that approximates the data generating process. We move on to consider biomarker discovery problems. We present a novel algorithm for proposing putative biomarkers on the strength of both their predictive ability and the stability with which they are selected. In a simulation study, we find our approach to perform favourably in comparison to strategies that select on the basis of predictive performance alone. We then consider the real problem of identifying protein peak biomarkers for HAM/TSP, an inflammatory condition of the central nervous system caused by HTLV-1 infection. We apply our algorithm to a set of SELDI mass spectral data, and identify a number of putative biomarkers. Additional experimental work, together with known results from the literature, provides corroborating evidence for the validity of these putative biomarkers. Having focused on static observations, we then make the natural progression to time course data sets. We propose a (Bayesian) bootstrap approach for such data, and then apply our method in the context of gene network inference and the estimation of parameters in ordinary differential equation models. We find that the inferred gene networks are relatively unstable, and demonstrate the importance of finding distributions of ODE parameter estimates, rather than single point estimates
    corecore