3,030 research outputs found

    Modeling of linear fading memory systems

    Get PDF
    Motivated by questions of approximate modeling and identification, we consider various classes of linear time-varying bounded-input-bounded output (BIBO) stable fading memory systems and the characterizations are proved. These include fading memory systems in general, almost periodic systems, and asymptotically periodic systems. We also show that the norm and strong convergence coincide for BIBO stable causal fading memory system

    Worst-case indentification of nonlinear fading memory systems

    Get PDF
    Caption title.Includes bibliographical references (p. 11-12).Supported by the AFOSR. AFOSR-91-0368 AFOSR-91-0346 Supported by NSF. 9157306-ECS ECS-8552419 Supported by an NSERC fellowship from the government of Canada.Munther A. Dahleh ... [et al.]

    Asymptotic worst-case identification with bounded noise

    Get PDF
    Caption title.Includes bibliographical references (p. 13-15).Supported by by AFOSR. AFOSR-91-0368 Supported by NSF. 9157306-ECSMunther A. Dahleh

    Digital adaptive flight controller development

    Get PDF
    A design study of adaptive control logic suitable for implementation in modern airborne digital flight computers was conducted. Two designs are described for an example aircraft. Each of these designs uses a weighted least squares procedure to identify parameters defining the dynamics of the aircraft. The two designs differ in the way in which control law parameters are determined. One uses the solution of an optimal linear regulator problem to determine these parameters while the other uses a procedure called single stage optimization. Extensive simulation results and analysis leading to the designs are presented

    Mathematical Models of Physiological Responses to Exercise

    Get PDF
    This paper develops empirical mathematical models for physiological responses to exercise. We first find single-input single-output models describing heart rate variability, ventilation, oxygen consumption and carbon dioxide production in response to workload changes and then identify a single-input multi-output model from workload to these physiological variabilities. We also investigate the possibility of the existence of a universal model for physiological variability in different individuals during treadmill running. Simulations based on real data substantiate that the obtained models accurately capture the physiological responses to workload variations. In particular, it is observed that (i) different physiological responses to exercise can be captured by low-order linear or mildly nonlinear models; and (ii) there may exist a universal model for oxygen consumption that works for different individuals

    Wireless Channel Equalization in Digital Communication Systems

    Get PDF
    Our modern society has transformed to an information-demanding system, seeking voice, video, and data in quantities that could not be imagined even a decade ago. The mobility of communicators has added more challenges. One of the new challenges is to conceive highly reliable and fast communication system unaffected by the problems caused in the multipath fading wireless channels. Our quest is to remove one of the obstacles in the way of achieving ultimately fast and reliable wireless digital communication, namely Inter-Symbol Interference (ISI), the intensity of which makes the channel noise inconsequential. The theoretical background for wireless channels modeling and adaptive signal processing are covered in first two chapters of dissertation. The approach of this thesis is not based on one methodology but several algorithms and configurations that are proposed and examined to fight the ISI problem. There are two main categories of channel equalization techniques, supervised (training) and blind unsupervised (blind) modes. We have studied the application of a new and specially modified neural network requiring very short training period for the proper channel equalization in supervised mode. The promising performance in the graphs for this network is presented in chapter 4. For blind modes two distinctive methodologies are presented and studied. Chapter 3 covers the concept of multiple cooperative algorithms for the cases of two and three cooperative algorithms. The select absolutely larger equalized signal and majority vote methods have been used in 2-and 3-algoirithm systems respectively. Many of the demonstrated results are encouraging for further research. Chapter 5 involves the application of general concept of simulated annealing in blind mode equalization. A limited strategy of constant annealing noise is experimented for testing the simple algorithms used in multiple systems. Convergence to local stationary points of the cost function in parameter space is clearly demonstrated and that justifies the use of additional noise. The capability of the adding the random noise to release the algorithm from the local traps is established in several cases

    Digital Predistortion in Large-Array Digital Beamforming Transmitters

    Get PDF
    In this article, we propose a novel digital predistortion (DPD) solution that allows to considerably reduce the complexity resulting from linearizing a set of power amplifiers (PAs) in single-user large-scale digital beamforming transmitters. In contrast to current state-of-the art solutions that assume a dedicated DPD per power amplifier, which is unfeasible in the context of large antenna arrays, the proposed solution only requires a single DPD in order to linearize an arbitrary number of power amplifiers. To this end, the proposed DPD predistorts the signal at the input of the digital precoder based on minimizing the nonlinear distortion of the combined signal at the intended receiver direction. This is a desirable feature, since the resulting emissions in other directions get partially diluted due to less coherent superposition. With this approach, only a single DPD is required, yielding great complexity and energy savings.Comment: 8 pages, Accepted for publication in Asilomar Conference on Signals, Systems, and Computer

    Worst-case analysis of identification - BIBO robustness for closed loop data

    Get PDF
    This paper deals with the worst-case analysis of identification of linear shift-invariant (possibly) infinite-dimensional systems. A necessary and sufficient input richness condition for the existence of robustly convergent identification algorithms in l1 is given. A closed-loop identification setting is studied to cover both stable and unstable (but BIBO stabilizable) systems. Identification (or modeling) error is then measured by distance functions which lead to the weakest convergence notions for systems such that closed-loop stability, in the sense of BIBO stability, is a robust property. Worst-case modeling error bounds in several distance functions are include

    Communication Subsystems for Emerging Wireless Technologies

    Get PDF
    The paper describes a multi-disciplinary design of modern communication systems. The design starts with the analysis of a system in order to define requirements on its individual components. The design exploits proper models of communication channels to adapt the systems to expected transmission conditions. Input filtering of signals both in the frequency domain and in the spatial domain is ensured by a properly designed antenna. Further signal processing (amplification and further filtering) is done by electronics circuits. Finally, signal processing techniques are applied to yield information about current properties of frequency spectrum and to distribute the transmission over free subcarrier channels
    corecore