3,152 research outputs found

    On some approximately balanced combinatorial cooperative games

    Get PDF
    A model of taxation for cooperativen-person games is introduced where proper coalitions Are taxed proportionally to their value. Games with non-empty core under taxation at rateɛ-balanced. Sharp bounds onɛ in matching games (not necessarily bipartite) graphs are estabLished. Upper and lower bounds on the smallestɛ in bin packing games are derived and euclidean random TSP games are seen to be, with high probability,ɛ-balanced forɛ≈0.06

    Minimal proper non-IRUP instances of the one-dimensional Cutting Stock Problem

    Full text link
    We consider the well-known one dimensional cutting stock problem (1CSP). Based on the pattern structure of the classical ILP formulation of Gilmore and Gomory, we can decompose the infinite set of 1CSP instances, with a fixed demand n, into a finite number of equivalence classes. We show up a strong relation to weighted simple games. Studying the integer round-up property we computationally show that all 1CSP instances with n9n\le 9 are proper IRUP, while we give examples of a proper non-IRUP instances with n=10n=10. A gap larger than 1 occurs for n=11n=11. The worst known gap is raised from 1.003 to 1.0625. The used algorithmic approaches are based on exhaustive enumeration and integer linear programming. Additionally we give some theoretical bounds showing that all 1CSP instances with some specific parameters have the proper IRUP.Comment: 14 pages, 2 figures, 2 table

    Vector Bin Packing with Multiple-Choice

    Full text link
    We consider a variant of bin packing called multiple-choice vector bin packing. In this problem we are given a set of items, where each item can be selected in one of several DD-dimensional incarnations. We are also given TT bin types, each with its own cost and DD-dimensional size. Our goal is to pack the items in a set of bins of minimum overall cost. The problem is motivated by scheduling in networks with guaranteed quality of service (QoS), but due to its general formulation it has many other applications as well. We present an approximation algorithm that is guaranteed to produce a solution whose cost is about lnD\ln D times the optimum. For the running time to be polynomial we require D=O(1)D=O(1) and T=O(logn)T=O(\log n). This extends previous results for vector bin packing, in which each item has a single incarnation and there is only one bin type. To obtain our result we also present a PTAS for the multiple-choice version of multidimensional knapsack, where we are given only one bin and the goal is to pack a maximum weight set of (incarnations of) items in that bin

    Optimizing egalitarian performance in the side-effects model of colocation for data center resource management

    Full text link
    In data centers, up to dozens of tasks are colocated on a single physical machine. Machines are used more efficiently, but tasks' performance deteriorates, as colocated tasks compete for shared resources. As tasks are heterogeneous, the resulting performance dependencies are complex. In our previous work [18] we proposed a new combinatorial optimization model that uses two parameters of a task - its size and its type - to characterize how a task influences the performance of other tasks allocated to the same machine. In this paper, we study the egalitarian optimization goal: maximizing the worst-off performance. This problem generalizes the classic makespan minimization on multiple processors (P||Cmax). We prove that polynomially-solvable variants of multiprocessor scheduling are NP-hard and hard to approximate when the number of types is not constant. For a constant number of types, we propose a PTAS, a fast approximation algorithm, and a series of heuristics. We simulate the algorithms on instances derived from a trace of one of Google clusters. Algorithms aware of jobs' types lead to better performance compared with algorithms solving P||Cmax. The notion of type enables us to model degeneration of performance caused by using standard combinatorial optimization methods. Types add a layer of additional complexity. However, our results - approximation algorithms and good average-case performance - show that types can be handled efficiently.Comment: Author's version of a paper published in Euro-Par 2017 Proceedings, extends the published paper with addtional results and proof

    Smoothed Efficient Algorithms and Reductions for Network Coordination Games

    Get PDF
    Worst-case hardness results for most equilibrium computation problems have raised the need for beyond-worst-case analysis. To this end, we study the smoothed complexity of finding pure Nash equilibria in Network Coordination Games, a PLS-complete problem in the worst case. This is a potential game where the sequential-better-response algorithm is known to converge to a pure NE, albeit in exponential time. First, we prove polynomial (resp. quasi-polynomial) smoothed complexity when the underlying game graph is a complete (resp. arbitrary) graph, and every player has constantly many strategies. We note that the complete graph case is reminiscent of perturbing all parameters, a common assumption in most known smoothed analysis results. Second, we define a notion of smoothness-preserving reduction among search problems, and obtain reductions from 22-strategy network coordination games to local-max-cut, and from kk-strategy games (with arbitrary kk) to local-max-cut up to two flips. The former together with the recent result of [BCC18] gives an alternate O(n8)O(n^8)-time smoothed algorithm for the 22-strategy case. This notion of reduction allows for the extension of smoothed efficient algorithms from one problem to another. For the first set of results, we develop techniques to bound the probability that an (adversarial) better-response sequence makes slow improvements on the potential. Our approach combines and generalizes the local-max-cut approaches of [ER14,ABPW17] to handle the multi-strategy case: it requires a careful definition of the matrix which captures the increase in potential, a tighter union bound on adversarial sequences, and balancing it with good enough rank bounds. We believe that the approach and notions developed herein could be of interest in addressing the smoothed complexity of other potential and/or congestion games
    corecore