17,209 research outputs found

    Achievable Rate Regions for Two-Way Relay Channel using Nested Lattice Coding

    Get PDF
    This paper studies Gaussian Two-Way Relay Channel where two communication nodes exchange messages with each other via a relay. It is assumed that all nodes operate in half duplex mode without any direct link between the communication nodes. A compress-and-forward relaying strategy using nested lattice codes is first proposed. Then, the proposed scheme is improved by performing a layered coding : a common layer is decoded by both receivers and a refinement layer is recovered only by the receiver which has the best channel conditions. The achievable rates of the new scheme are characterized and are shown to be higher than those provided by the decode-and-forward strategy in some regions.Comment: 27 pages, 13 figures, Submitted to IEEE Transactions on Wireless Communications (October 2013

    Robust and scalable matching pursuits video transmission using the Bluetooth air interface standard

    Get PDF

    Variable-to-Fixed Length Homophonic Coding Suitable for Asymmetric Channel Coding

    Full text link
    In communication through asymmetric channels the capacity-achieving input distribution is not uniform in general. Homophonic coding is a framework to invertibly convert a (usually uniform) message into a sequence with some target distribution, and is a promising candidate to generate codewords with the nonuniform target distribution for asymmetric channels. In particular, a Variable-to-Fixed length (VF) homophonic code can be used as a suitable component for channel codes to avoid decoding error propagation. However, the existing VF homophonic code requires the knowledge of the maximum relative gap of probabilities between two adjacent sequences beforehand, which is an unrealistic assumption for long block codes. In this paper we propose a new VF homophonic code without such a requirement by allowing one-symbol decoding delay. We evaluate this code theoretically and experimentally to verify its asymptotic optimality.Comment: Full version of the paper to appear in 2017 IEEE International Symposium on Information Theory (ISIT2017

    Outage analysis of superposition modulation aided network coded cooperation in the presence of network coding noise

    No full text
    We consider a network, where multiple sourcedestination pairs communicate with the aid of a half-duplex relay node (RN), which adopts decode-forward (DF) relaying and superposition-modulation (SPM) for combining the signals transmitted by the source nodes (SNs) and then forwards the composite signal to all the destination nodes (DNs). Each DN extracts the signals transmitted by its own SN from the composite signal by subtracting the signals overheard from the unwanted SNs. We derive tight lower-bounds for the outage probability for transmission over Rayleigh fading channels and invoke diversity combining at the DNs, which is validated by simulation for both the symmetric and the asymmetric network configurations. For the high signal-to-noise ratio regime, we derive both an upperbound as well as a lower-bound for the outage performance and analyse the achievable diversity gain. It is revealed that a diversity order of 2 is achieved, regardless of the number of SN-DN pairs in the network. We also highlight the fact that the outage performance is dominated by the quality of the worst overheated link, because it contributes most substantially to the network coding noise. Finally, we use the lower bound for designing a relay selection scheme for the proposed SPM based network coded cooperative communication (SPM-NC-CC) system.<br/
    corecore