18,085 research outputs found

    Worst-Case Optimal Tree Layout in External Memory

    Get PDF
    Consider laying out a fixed-topology binary tree of N nodes into external memory with block size B so as to minimize the worst-case number of block memory transfers required to traverse a path from the root to a node of depth D. We prove that the optimal number of memory transfers is Θ([D over lg(1+B))] when D = O(lgN), Θ([lgN over lg(1+[BlgN over D])]) when D=Ω(lgN) and D=O(BlgN), Θ([D over B]) ,when D=Ω(BlgN).National Science Foundation (U.S.) (Grant CCF-0430849)National Science Foundation (U.S.) (Grant OISE-0334653

    Comparing Tag Scheme Variations Using an Abstract Machine Generator

    Get PDF
    In this paper we study, in the context of a WAM-based abstract machine for Prolog, how variations in the encoding of type information in tagged words and in their associated basic operations impact performance and memory usage. We use a high-level language to specify encodings and the associated operations. An automatic generator constructs both the abstract machine using this encoding and the associated Prolog-to-byte code compiler. Annotations in this language make it possible to impose constraints on the final representation of tagged words, such as the effectively addressable space (fixing, for example, the word size of the target processor /architecture), the layout of the tag and value bits inside the tagged word, and how the basic operations are implemented. We evaluate large number of combinations of the different parameters in two scenarios: a) trying to obtain an optimal general-purpose abstract machine and b) automatically generating a specially-tuned abstract machine for a particular program. We conclude that we are able to automatically generate code featuring all the optimizations present in a hand-written, highly-optimized abstract machine and we canal so obtain emulators with larger addressable space and better performance

    Prospects and limitations of full-text index structures in genome analysis

    Get PDF
    The combination of incessant advances in sequencing technology producing large amounts of data and innovative bioinformatics approaches, designed to cope with this data flood, has led to new interesting results in the life sciences. Given the magnitude of sequence data to be processed, many bioinformatics tools rely on efficient solutions to a variety of complex string problems. These solutions include fast heuristic algorithms and advanced data structures, generally referred to as index structures. Although the importance of index structures is generally known to the bioinformatics community, the design and potency of these data structures, as well as their properties and limitations, are less understood. Moreover, the last decade has seen a boom in the number of variant index structures featuring complex and diverse memory-time trade-offs. This article brings a comprehensive state-of-the-art overview of the most popular index structures and their recently developed variants. Their features, interrelationships, the trade-offs they impose, but also their practical limitations, are explained and compared
    corecore