6,302 research outputs found

    Worst-Case Growth Rates of Some Classical Problems of Combinatorial Optimization

    Get PDF
    A method is presented for determining the asymptotic worst-case behavior of quantities like the length of the minimal spanning tree or the length of an optimal traveling salesman tour of nn points in the unit dd-cube. In each of these classical problems, the worst-case lengths are proved to have the exact asymptotic growth rate of βn(d−1)/d\beta _n^{{{(d - 1)} / d}} , where β\beta is a positive constant depending on the problem and the dimension. These results complement known results on the growth rates for the analogous quantities under probabilistic assumptions on the points, but the results given here are free of any probabilistic hypotheses

    First-order regret bounds for combinatorial semi-bandits

    Get PDF
    We consider the problem of online combinatorial optimization under semi-bandit feedback, where a learner has to repeatedly pick actions from a combinatorial decision set in order to minimize the total losses associated with its decisions. After making each decision, the learner observes the losses associated with its action, but not other losses. For this problem, there are several learning algorithms that guarantee that the learner's expected regret grows as O~(T)\widetilde{O}(\sqrt{T}) with the number of rounds TT. In this paper, we propose an algorithm that improves this scaling to O~(LT∗)\widetilde{O}(\sqrt{{L_T^*}}), where LT∗L_T^* is the total loss of the best action. Our algorithm is among the first to achieve such guarantees in a partial-feedback scheme, and the first one to do so in a combinatorial setting.Comment: To appear at COLT 201

    Phase Transitions of the Typical Algorithmic Complexity of the Random Satisfiability Problem Studied with Linear Programming

    Full text link
    Here we study the NP-complete KK-SAT problem. Although the worst-case complexity of NP-complete problems is conjectured to be exponential, there exist parametrized random ensembles of problems where solutions can typically be found in polynomial time for suitable ranges of the parameter. In fact, random KK-SAT, with α=M/N\alpha=M/N as control parameter, can be solved quickly for small enough values of α\alpha. It shows a phase transition between a satisfiable phase and an unsatisfiable phase. For branch and bound algorithms, which operate in the space of feasible Boolean configurations, the empirically hardest problems are located only close to this phase transition. Here we study KK-SAT (K=3,4K=3,4) and the related optimization problem MAX-SAT by a linear programming approach, which is widely used for practical problems and allows for polynomial run time. In contrast to branch and bound it operates outside the space of feasible configurations. On the other hand, finding a solution within polynomial time is not guaranteed. We investigated several variants like including artificial objective functions, so called cutting-plane approaches, and a mapping to the NP-complete vertex-cover problem. We observed several easy-hard transitions, from where the problems are typically solvable (in polynomial time) using the given algorithms, respectively, to where they are not solvable in polynomial time. For the related vertex-cover problem on random graphs these easy-hard transitions can be identified with structural properties of the graphs, like percolation transitions. For the present random KK-SAT problem we have investigated numerous structural properties also exhibiting clear transitions, but they appear not be correlated to the here observed easy-hard transitions. This renders the behaviour of random KK-SAT more complex than, e.g., the vertex-cover problem.Comment: 11 pages, 5 figure

    Single-Step Quantum Search Using Problem Structure

    Get PDF
    The structure of satisfiability problems is used to improve search algorithms for quantum computers and reduce their required coherence times by using only a single coherent evaluation of problem properties. The structure of random k-SAT allows determining the asymptotic average behavior of these algorithms, showing they improve on quantum algorithms, such as amplitude amplification, that ignore detailed problem structure but remain exponential for hard problem instances. Compared to good classical methods, the algorithm performs better, on average, for weakly and highly constrained problems but worse for hard cases. The analytic techniques introduced here also apply to other quantum algorithms, supplementing the limited evaluation possible with classical simulations and showing how quantum computing can use ensemble properties of NP search problems.Comment: 39 pages, 12 figures. Revision describes further improvement with multiple steps (section 7). See also http://www.parc.xerox.com/dynamics/www/quantum.htm
    • …
    corecore