170 research outputs found

    Worst case burstiness increase due to FIFO multiplexing

    Get PDF
    We consider a FIFO multiplexer fed by flows that are individually constrained by arrival curves, and look for the best possible arrival curve for every output flow. This problem arises in scenarios where aggregate multiplexing is performed, such as differentiated services or front ends to optical switches. We obtain an exact result for a fluid model and for piecewise linear concave arrival curves, which are common in practice and correspond to combinations of leaky buckets

    Least Upper Delay Bound for VBR Flows in Networks-on- Chip with Virtual Channels

    Get PDF
    Real-time applications such as multimedia and gaming require stringent performance guarantees, usually enforced by a tight upper bound on the maximum end-to-end delay. For FIFO multiplexed on-chip packet switched networks we consider worst-case delay bounds for Variable Bit-Rate (VBR) flows with aggregate scheduling, which schedules multiple flows as an aggregate flow. VBR Flows are characterized by a maximum transfer size, peak rate, burstiness, and average sustainable rate. Based on network calculus, we present and prove theorems to derive per-flow end-to-end Equivalent Service Curves (ESC) which are in turn used for computing Least Upper Delay Bounds (LUDBs) of individual flows. In a realistic case study we find that the end-to-end delay bound is up to 46.9% more accurate than the case without considering the traffic peak behavior. Likewise, results also show similar improvements for synthetic traffic patterns. The proposed methodology is implemented in C++ and has low run-time complexity, enabling quick evaluation for large and complex SoCs

    Application of learning algorithms to traffic management in integrated services networks.

    Get PDF
    SIGLEAvailable from British Library Document Supply Centre-DSC:DXN027131 / BLDSC - British Library Document Supply CentreGBUnited Kingdo

    Design and evaluation of high-performance packet switching schemes

    Get PDF
    The design of high-performance packet switches is essential to efficiently handle the exponential growth of data traffic in the next generation Internet. Shared-memory-based packet switches are known to provide the best possible delay-throughput performance and the lowest packet-loss rate compared with packet switches using other buffering strategies. However, scalability of shared-memory-based switching systems has been restricted by high memory bandwidth requirements, segregation of memory space and centralized control of switching functions that causes the switch performance to degrade as a shared-memory switch is grown in size. The new class of sliding-window based packet switches are known to overcome these problems associated with shared-memory switches. This thesis presents different schemes proposed earlier by Dr. Kumar for use in the sliding-window switch to allocate self-routing parameters. Comparative performance of these schemes have been evaluated in this thesis. The results show the scalability of the switch that can be achieved with different parameter assignment schemes. It is shown that not all assignment schemes have same performance. With appropriate assignment scheme, it is possible to achieve very high throughput-performance and switch size for sliding-window switches

    A Slotted Ring Test Bed for the Study of ATM Network Congestion Management

    Get PDF
    This thesis addresses issues raised by the proposed Broadband Integrated Services Digital Network which will provide a flexible combination of integrated services traffic through its cell-based Asynchronbus Transport Mode (ATM). The introduction of a cell-based, connection-oriented, transport mode brings with it new technical challenges for network management. The routing of cells, their service at switching centres, and problems of cell congestion not encountered in the existing network, are some of the key issues. The thesis describes the development of a hardware slotted ring testbed for the investigation of congestion management in an ATM network. The testbed is designed to incorporate a modified form of the ORWELL protocol to control media access. The media access protocol is analysed to give a model for maximum throughput and reset interval under various traffic distributions. The results from the models are compared with measurements carried out on the testbed, where cell arrival statistics are also varied. It is shown that the maximum throughput of the testbed is dependent on both traffic distribution and cell arrival statistics. The testbed is used for investigations in a heterogeneous traffic environment where two classes of traffic with different cell arrival statistics and quality of service requirements are defined. The effect of prioritisation, media access protocol, traffic intensity, and traffic source statistics were investigated by determining an Admissible Load Region (ALR) for a network station. Conclusions drawn from this work suggest that there are many problems associated with the reliable definition of an ALR because of the number of variable parameters which could shift the ALR boundary. A suggested direction for further work is to explore bandwidth reservation and the concept of equivalent capacity of a connection, and how this can be linked to source control parameters
    • …
    corecore