10,032 research outputs found

    Teaching old sensors New tricks: archetypes of intelligence

    No full text
    In this paper a generic intelligent sensor software architecture is described which builds upon the basic requirements of related industry standards (IEEE 1451 and SEVA BS- 7986). It incorporates specific functionalities such as real-time fault detection, drift compensation, adaptation to environmental changes and autonomous reconfiguration. The modular based structure of the intelligent sensor architecture provides enhanced flexibility in regard to the choice of specific algorithmic realizations. In this context, the particular aspects of fault detection and drift estimation are discussed. A mixed indicative/corrective fault detection approach is proposed while it is demonstrated that reversible/irreversible state dependent drift can be estimated using generic algorithms such as the EKF or on-line density estimators. Finally, a parsimonious density estimator is presented and validated through simulated and real data for use in an operating regime dependent fault detection framework

    Joint Estimation and Localization in Sensor Networks

    Get PDF
    This paper addresses the problem of collaborative tracking of dynamic targets in wireless sensor networks. A novel distributed linear estimator, which is a version of a distributed Kalman filter, is derived. We prove that the filter is mean square consistent in the case of static target estimation. When large sensor networks are deployed, it is common that the sensors do not have good knowledge of their locations, which affects the target estimation procedure. Unlike most existing approaches for target tracking, we investigate the performance of our filter when the sensor poses need to be estimated by an auxiliary localization procedure. The sensors are localized via a distributed Jacobi algorithm from noisy relative measurements. We prove strong convergence guarantees for the localization method and in turn for the joint localization and target estimation approach. The performance of our algorithms is demonstrated in simulation on environmental monitoring and target tracking tasks.Comment: 9 pages (two-column); 5 figures; Manuscript submitted to the 2014 IEEE Conference on Decision and Control (CDC

    Joint estimation and localization in sensor networks

    Full text link
    This paper addresses the problem of collaborative tracking of dynamic targets in wireless sensor networks. A novel distributed linear estimator, which is a version of a distributed Kalman filter, is derived. We prove that the filter is mean square consistent in the case of static target estimation. When large sensor networks are deployed, it is common that the sensors do not have good knowledge of their locations, which affects the target estimation procedure. Unlike most existing approaches for target tracking, we investigate the performance of our filter when the sensor poses need to be estimated by an auxiliary localization procedure. The sensors are localized via a distributed Jacobi algorithm from noisy relative measurements. We prove strong convergence guarantees for the localization method and in turn for the joint localization and target estimation approach. The performance of our algorithms is demonstrated in simulation on environmental monitoring and target tracking tasks

    A panel model for predicting the diversity of internal temperatures from English dwellings

    Get PDF
    Using panel methods, a model for predicting daily mean internal temperature demand across a heterogeneous domestic building stock is developed. The model offers an important link that connects building stock models to human behaviour. It represents the first time a panel model has been used to estimate the dynamics of internal temperature demand from the natural daily fluctuations of external temperature combined with important behavioural, socio-demographic and building efficiency variables. The model is able to predict internal temperatures across a heterogeneous building stock to within ~0.71°C at 95% confidence and explain 45% of the variance of internal temperature between dwellings. The model confirms hypothesis from sociology and psychology that habitual behaviours are important drivers of home energy consumption. In addition, the model offers the possibility to quantify take-back (direct rebound effect) owing to increased internal temperatures from the installation of energy efficiency measures. The presence of thermostats or thermostatic radiator valves (TRV) are shown to reduce average internal temperatures, however, the use of an automatic timer is statistically insignificant. The number of occupants, household income and occupant age are all important factors that explain a proportion of internal temperature demand. Households with children or retired occupants are shown to have higher average internal temperatures than households who do not. As expected, building typology, building age, roof insulation thickness, wall U-value and the proportion of double glazing all have positive and statistically significant effects on daily mean internal temperature. In summary, the model can be used as a tool to predict internal temperatures or for making statistical inferences. However, its primary contribution offers the ability to calibrate existing building stock models to account for behaviour and socio-demographic effects making it possible to back-out more accurate predictions of domestic energy demand

    Basic research planning in mathematical pattern recognition and image analysis

    Get PDF
    Fundamental problems encountered while attempting to develop automated techniques for applications of remote sensing are discussed under the following categories: (1) geometric and radiometric preprocessing; (2) spatial, spectral, temporal, syntactic, and ancillary digital image representation; (3) image partitioning, proportion estimation, and error models in object scene interference; (4) parallel processing and image data structures; and (5) continuing studies in polarization; computer architectures and parallel processing; and the applicability of "expert systems" to interactive analysis
    corecore