609,536 research outputs found

    Seeing the sky through Hubble's eye: The COSMOS SkyWalker

    Get PDF
    Large, high-resolution space-based imaging surveys produce a volume of data that is difficult to present to the public in a comprehensible way. While megapixel-sized images can still be printed out or downloaded via the World Wide Web, this is no longer feasible for images with 10^9 pixels (e.g., the Hubble Space Telescope Advanced Camera for Surveys [ACS] images of the Galaxy Evolution from Morphology and SEDs [GEMS] project) or even 10^10 pixels (for the ACS Cosmic Evolution Survey [COSMOS]). We present a Web-based utility called the COSMOS SkyWalker that allows viewing of the huge ACS image data set, even through slow Internet connections. Using standard HTML and JavaScript, the application successively loads only those portions of the image at a time that are currently being viewed on the screen. The user can move within the image by using the mouse or interacting with an overview image. Using an astrometrically registered image for the COSMOS SkyWalker allows the display of calibrated world coordinates for use in science. The SkyWalker "technique" can be applied to other data sets. This requires some customization, notably the slicing up of a data set into small (e.g., 256^2 pixel) subimages. An advantage of the SkyWalker is the use of standard Web browser components; thus, it requires no installation of any software and can therefore be viewed by anyone across many operating systems.Comment: 4 pages, 2 figures, accepted for publication in PAS

    A flexible service selection for executing virtual services

    Full text link
    [EN] With the adoption of a service-oriented paradigm on the Web, many software services are likely to fulfil similar functional needs for end-users. We propose to aggregate functionally equivalent software services within one single virtual service, that is, to associate a functionality, a graphical user interface (GUI), and a set of selection rules. When an end user invokes such a virtual service through its GUI to answer his/her functional need, the software service that best responds to the end-user s selection policy is selected and executed and the result is then rendered to the end-user through the GUI of the virtual service. A key innovation in this paper is the flexibility of our proposed service selection policy. First, each selection policy can refer to heterogeneous parameters (e.g., service price, end-user location, and QoS). Second, additional parameters can be added to an existing or new policy with little investment. Third, the end users themselves define a selection policy to apply during the selection process, thanks to the GUI element added as part of the virtual service design. This approach was validated though the design, implementation, and testing of an end-to-end architecture, including the implementation of several virtual services and utilizing several software services available today on the Web.This work was partially supported in part by SERVERY (Service Platform for Innovative Communication Environment), a CELTIC project that aims to create a Service Marketplace that bridges the Internet and Telco worlds by merging the flexibility and openness of the former with the trustworthiness and reliability of the latter, enabling effective and profitable cooperation among actors.Laga, N.; Bertin, E.; Crespi, N.; Bedini, I.; Molina Moreno, B.; Zhao, Z. (2013). A flexible service selection for executing virtual services. World Wide Web. 16(3):219-245. doi:10.1007/s11280-012-0184-2S219245163Aggarwal, R., Verma, K., Miller, J., and Milnor, W.: Constraint Driven Web Service Composition in METEOR-S. In Proceedings of the 2004 IEEE international Conference on Services Computing (September 2004). IEEE Computer Society, Washington, DC, 23–30.Apple Inc. Apple app store.: Available at: www.apple.com/iphone/appstore/ , accessed on May 22nd, 2012.Atzeni, P., Catarci, T., Pernici, B.: Multi-Channel adaptive information Systems. World Wide Web 10(4), 345–347 (2007)Baresi, L., Bianchini, D., Antonellis, V.D., Fugini, M.G., Pernici, B., Plebani, P.: Context-aware Composition of e-Service. In Technologies for E-Services: Third International Workshop, vol. 2819, 28–41, TES 2003, Berlin, German, 2003.Ben Hassine, A., Matsubara, S., Ishida, T.: In Proceedings of the 5th international conference on The Semantic Web (ISWC’06), Isabel Cruz, Stefan Decker, Dean Allemang, Chris Preist, and Daniel Schwabe (Eds.). Springer-Verlag, Berlin, Heidelberg, 130–143 (2006).Blum, N., Dutkowski, S., Magedanz, T.: InSeRt - An Intent-based Service Request API for Service Exposure in Next Generation Networks. In Proceedings of 32nd Annual IEEE Software Engineering Workshop. Porto Sani Resort, Kassandra, Greece, 2008 pp21–30.Boussard, M., Fodor, S., Crespi, N., Iribarren, V., Le Rouzic, J.P., Bedini, I., Marton, G., Moro Fernandez, D., Lorenzo Duenas, O., Molina, B.: SERVERY: the Web-Telco marketplace. ICT-Mobile Summit 2009, Santander (2009)Cabrera, Ó., Oriol, M., Franch, X., Marco, J., LĂłpez, L., Fragoso, O., Santaolaya, R.: WeSSQoS: A Configurable SOA System for Quality-aware Web Service Selection. CoRR 2011, abs/1110.5574.Casati, F., Ilnicki, S., Jin, L., Krishnamoorthy, V., Shan, M.: Adaptive and Dynamic Service Composition in eFlow. Lecture Notes in Computer Science, Volume 1789/2000, 13–31, 2000.CibrĂĄn, M. A., Verheecke, B., Vanderperren, W., SuvĂ©e, D., and Jonckers, V.: “Aspect-oriented Programming for Dynamic Web Service Selection, Integration and Management.” In Proc. World Wide Web 2007, pp. 211–242.Crespi, N., Boussard, M. Fodor, S.: Converging Web 2.0 with telecommunications. eStrategies Projects, Vol. 10, 108–109. British Publishers, ISSN 1758–2369, June 2009.Dey, A.K., Salber, D., Abowd, G.D.: A conceptual framework and a toolkit for supporting the rapid prototyping of context-aware applications. Hum. Comput. Interact. 16, 1–67 (2001)Ding, Q., Li, X., and Zhou, X.: Reputation Based Service Selection in Grid Environment. In Proceedings of the 2008 international Conference on Computer Science and Software Engineering - Volume 03 (December. 2008). CSSE. IEEE Computer Society, Washington, DC, 58–61.Fielding, R.T.: Architectural Styles and the Design of Network-based Software Architectures. Thesis dissertation, 2000.Franch, X., GrĂŒnbacher, P., Oriol, M., Burgstaller, B., Dhungana, D., LĂłpez, L., Marco, J., Pimentel, J.: Goal-driven Adaptation of Service-Based Systems from Runtime Monitoring Data. REFS 2011.Frolund, S., Koisten, J.: QML: A Language for Quality of Service Specification. HP Labs technical reports. Available at http://www.hpl.hp.com/techreports/98/HPL-98-10.html , accessed on May 22nd, 2012.Google. Android market.: Available at: www.android.com/market/ , accessed on May 22nd, 2012.Google. Intents and Intent Filters.: Available at http://developer.android.com/guide/topics/intents/intents-filters.html , accessed on May 22nd, 2012.Gu, X., Nahrstedt, K., Yuan, W., Wichadakul, D., Xu, D.: An Xml-Based Quality of Service Enabling Language for the Web. Technical Report. UMI Order Number: UIUCDCS-R-2001-2212., University of Illinois at Urbana-Champaign.Laga, N., Bertin, E., and Crespi, N.: Building a User Friendly Service Dashboard: Automatic and Non-intrusive Chaining between Widgets. In Proceedings of the 2009 Congress on Services - I (July 06–10, 2009). SERVICES. IEEE Computer Society, Washington, DC, 484–491.Laga, N., Bertin, E., and Crespi, N.: Business Process Personalization Through Web Widgets. In Proceedings of the 2010 IEEE international Conference on Web Services (July 05–10, 2010). ICWS. IEEE Computer Society, Washington, DC, 551–558.Liu, Y., Ngu, A. H., and Zeng, L. Z.: QoS computation and policing in dynamic web service selection. In Proceedings of the 13th international World Wide Web Conference on Alternate Track Papers &Amp; Posters (New York, NY, USA, May 19–21, 2004). WWW Alt. ’04. ACM, New York, NY, 66–73.Malik, Z., Bouguettaya, A.: Rater credibility assessment in Web services interactions. World Wide Web 12(1), 3–25 (2009)Martin, D. et al.: OWL-S: Semantic Markup for Web Services. W3C member submission, available at http://www.w3.org/Submission/2004/SUBM-OWL-S-20041122/ , accessed on May 22nd, 2012.Nestler, T., Namoun, A., Schill, A.: End-user development of service-based interactive web applications at the presentation layer. EICS 2011: 197–206.Newcomer, E.: Understanding Web Services: XML, Wsdl, Soap, and UDDI. Addison, Wesley, Boston, Mass., May 2002.O’Reilly, T.: What Is Web 2.0, Design Patterns and Business Models for the Next Generation of Software.Piessens, F., Jacobs, B., Truyen, E., Joosen, W.: Support for Metadata-driven Selection of Run-time Services in .NET is Promising but Immature. vol. 3, no. 2, Special issue: .NET: The Programmer’s Perspective: ECOOP Workshop, 27–35. 2003.Rasch, K;, Li, F., Sehic, S., Ayani R., and Dustdar, S.: “Context-driven personalized service discovery in pervasive environments,” in Proc World Wide Web, 2011, pp. 295–319.Reichl, P.: From ‘Quality-of-Service’ and ‘Quality-of-Design’ to ‘Quality-of-Experience’: A holistic view on future interactive telecommunication ser-vices. In 15th International Conference on Software, Telecommunications and Computer Networks, 2007. Soft-COM 2007. Sept. 2007. vol., no.,1–6, 27–29.Rolland, C., Kaabi, R.S., Kraiem, N.: On ISOA: Intentional Services Oriented Architecture. In Advanced Information Systems Engineering, volume 4495/2007, 158–172, June 2007.Sanchez, A., Carro, B., Wesner, S.: Telco services for end customers: European Perspective. In Communications Magazine. IEEE 46(2), 14–18 (2008)Santhanam, G. R., Basu, S., and Honavar, V.: On Utilizing Qualitative Preferences in Web Service Composition: A CP-net Based Approach. In Proceedings of IEEE Congress on Services, Services - Part I, vol., no.,538–544, 2008.Spanoudakis, G., Mahbub, K., Zisman, A.: A Platform for Context Aware Runtime Web Service Discovery. In Proc IEEE ICWS, 2007, pp233-240.Tsesmetzis, D., Roussaki, I., Sykas, E.: Modeling and Simulation of QoS-aware Web Service Selection for Provider Profit Maximization. Simulation 83(1), 93–106 (2007)Wang, P., Chao, K., Lo, C., Farmer, R., and Kuo, P.: A Reputation-Based Service Selection Scheme. In Proceedings of the 2009 IEEE international Conference on E-Business Engineering (October 21–23, 2009). ICEBE. IEEE Computer Society, Washington, DC, 501–506.Wang, H., Yang, D., Zhao, Y., and Gao, Y.: Multiagent System for Reputation--based Web Services Selection. In Proceedings of the Sixth international Conference on Quality Software (October 27–28, 2006). QSIC. IEEE Computer Society, Washington, DC, 429–434.Wholesale Applications Community.: WAC Informational Whitepaper. Available at http://www.wholesaleappcommunity.com/About-Wac/BACKGROUND%20TO%20WAC/whitepaper.pdf , accessed on May 22nd, 2012.Windows Marketplace.: Available at http://marketplace.windowsphone.com/default.aspx , accessed on May 22nd, 2012.Xu, Z., Martin, P., Powley, W., Zulkernine, F.: Reputation-Enhanced QoS-based Web Services Discovery. Web Services, 2007. In proceedings of IEEE International Conference on Web Services, ICWS 2007. 249, 256, 9–13 July 2007.Yu, Q., Bouguettaya,A.: “Multi-attribute optimization in service selection”. In Proc World Wide Web,2012, pp. 1–31.Yu, T., Zhang, Y., Lin, K. Efficient algorithms for Web services selection with end-to-end QoS constraints. ACM Transaction Web 1, 1. Article 6, 26 pages. (May 2007),

    What Web Template Extractor Should I Use? A Benchmarking and Comparison for Five Template Extractors

    Full text link
    "© ACM, 2019. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in PUBLICATION, {VOL 13, ISS 2, (APR 2019)} http://doi.acm.org/10.1145/3316810"[EN] A Web template is a resource that implements the structure and format of a website, making it ready for plugging content into already formatted and prepared pages. For this reason, templates are one of the main development resources for website engineers, because they increase productivity. Templates are also useful for the final user, because they provide uniformity and a common look and feel for all webpages. However, from the point of view of crawlers and indexers, templates are an important problem, because templates usually contain irrelevant information, such as advertisements, menus, and banners. Processing and storing this information leads to a waste of resources (storage space, bandwidth, etc.). It has been measured that templates represent between 40% and 50% of data on the Web. Therefore, identifying templates is essential for indexing tasks. There exist many techniques and tools for template extraction, but, unfortunately, it is not clear at all which template extractor should a user/system use, because they have never been compared, and because they present different (complementary) features such as precision, recall, and efficiency. In this work, we compare the most advanced template extractors. We implemented and evaluated five of the most advanced template extractors in the literature. To compare all of them, we implemented a workbench, where they have been integrated and evaluated. Thanks to this workbench, we can provide a fair empirical comparison of all methods using the same benchmarks, technology, implementation language, and evaluation criteria.This work has been partially supported by the EU (FEDER) and the Spanish Ministerio de Ciencia, Innovacion y Universidades/AEI under grant TIN2016-76843-C4-1-R and by the Generalitat Valenciana under grants PROMETEO-II/2015/013 (SmartLogic) and Prometeo/2019/098 (DeepTrust).Alarte, J.; Silva, J.; Tamarit Muñoz, S. (2019). What Web Template Extractor Should I Use? A Benchmarking and Comparison for Five Template Extractors. ACM Transactions on the Web. 13(2):9:1-9:19. https://doi.org/10.1145/3316810S9:19:19132Alarte, J., Insa, D., Silva, J., & Tamarit, S. (2015). TeMex. Proceedings of the 24th International Conference on World Wide Web - WWW ’15 Companion. doi:10.1145/2740908.2742835JuliĂĄn Alarte David Insa Josep Silva and Salvador Tamarit. 2016. Site-Level Web Template Extraction Based on DOM Analysis. Springer International Publishing Cham 36--49. JuliĂĄn Alarte David Insa Josep Silva and Salvador Tamarit. 2016. Site-Level Web Template Extraction Based on DOM Analysis. Springer International Publishing Cham 36--49.Alassi, D., & Alhajj, R. (2013). Effectiveness of template detection on noise reduction and websites summarization. Information Sciences, 219, 41-72. doi:10.1016/j.ins.2012.07.022Bar-Yossef, Z., & Rajagopalan, S. (2002). Template detection via data mining and its applications. Proceedings of the eleventh international conference on World Wide Web - WWW ’02. doi:10.1145/511446.511522Chakrabarti, D., Kumar, R., & Punera, K. (2007). Page-level template detection via isotonic smoothing. Proceedings of the 16th international conference on World Wide Web - WWW ’07. doi:10.1145/1242572.1242582Chen, L., Ye, S., & Li, X. (2006). Template detection for large scale search engines. Proceedings of the 2006 ACM symposium on Applied computing - SAC ’06. doi:10.1145/1141277.1141534Gibson, D., Punera, K., & Tomkins, A. (2005). The volume and evolution of web page templates. Special interest tracks and posters of the 14th international conference on World Wide Web - WWW ’05. doi:10.1145/1062745.1062763Kim, C., & Shim, K. (2011). TEXT: Automatic Template Extraction from Heterogeneous Web Pages. IEEE Transactions on Knowledge and Data Engineering, 23(4), 612-626. doi:10.1109/tkde.2010.140Barbara Ann Kitchenham David Budgen and Pearl Brereton. 2015. Evidence-Based Software Engineering and Systematic Reviews. Chapman 8 Hall/CRC. Barbara Ann Kitchenham David Budgen and Pearl Brereton. 2015. Evidence-Based Software Engineering and Systematic Reviews. Chapman 8 Hall/CRC.KoƂcz, A., & Yih, W. (s. f.). Site-Independent Template-Block Detection. Lecture Notes in Computer Science, 152-163. doi:10.1007/978-3-540-74976-9_17KohlschĂŒtter, C. (2009). A densitometric analysis of web template content. Proceedings of the 18th international conference on World wide web - WWW ’09. doi:10.1145/1526709.1526909Jing Li and C. I. Ezeife. 2006. Cleaning web pages for effective web content mining. In Database and Expert Systems Applications StĂ©phane Bressan Josef KĂŒng and Roland Wagner (Eds.). Springer Berlin 560--571. 10.1007/11827405_55 Jing Li and C. I. Ezeife. 2006. Cleaning web pages for effective web content mining. In Database and Expert Systems Applications StĂ©phane Bressan Josef KĂŒng and Roland Wagner (Eds.). Springer Berlin 560--571. 10.1007/11827405_55Bing Liu. 2006. Web Data Mining: Exploring Hyperlinks Contents and Usage Data (Data-Centric Systems and Applications). Springer-Verlag New York Inc. Secaucus NJ. Bing Liu. 2006. Web Data Mining: Exploring Hyperlinks Contents and Usage Data (Data-Centric Systems and Applications). Springer-Verlag New York Inc. Secaucus NJ.Liu, L., Han, W., Buttler, D., Pu, C., & Tang, W. (1999). An XJML-based wrapper generator for Web information extraction. Proceedings of the 1999 ACM SIGMOD international conference on Management of data - SIGMOD ’99. doi:10.1145/304182.304570Ma, L., Goharian, N., Chowdhury, A., & Chung, M. (2003). Extracting unstructured data from template generated web documents. Proceedings of the twelfth international conference on Information and knowledge management - CIKM ’03. doi:10.1145/956863.956961Manjula, R., & Chilambuchelvan, A. (2013). Extracting templates from Web pages. 2013 International Conference on Green Computing, Communication and Conservation of Energy (ICGCE). doi:10.1109/icgce.2013.6823541Christopher D. Manning Prabhakar Raghavan and Hinrich SchÃijtze. 2008. Introduction to Information Retrieval. Cambridge University Press New York NY. Christopher D. Manning Prabhakar Raghavan and Hinrich SchÃijtze. 2008. Introduction to Information Retrieval. Cambridge University Press New York NY.Meng, X., Hu, D., & Li, C. (2003). Schema-guided wrapper maintenance for web-data extraction. Proceedings of the fifth ACM international workshop on Web information and data management - WIDM ’03. doi:10.1145/956699.956701Nguyen, D. Q., Nguyen, D. Q., Pham, S. B., & Bui, T. D. (2009). A Fast Template-Based Approach to Automatically Identify Primary Text Content of a Web Page. 2009 International Conference on Knowledge and Systems Engineering. doi:10.1109/kse.2009.39SchĂ€fer, R. (2016). Accurate and efficient general-purpose boilerplate detection for crawled web corpora. Language Resources and Evaluation, 51(3), 873-889. doi:10.1007/s10579-016-9359-2Sivakumar, P. (2015). Effectual Web Content Mining using Noise Removal from Web Pages. Wireless Personal Communications, 84(1), 99-121. doi:10.1007/s11277-015-2596-7Song, D., Sun, F., & Liao, L. (2013). A hybrid approach for content extraction with text density and visual importance of DOM nodes. Knowledge and Information Systems, 42(1), 75-96. doi:10.1007/s10115-013-0687-xR. Uma and B. Latha. 2018. Noise elimination from web pages for efficacious information retrieval. Cluster Comput. (Mar. 2018). https://link.springer.com/article/10.1007/s10586-018-2366-x#citeas. R. Uma and B. Latha. 2018. Noise elimination from web pages for efficacious information retrieval. Cluster Comput. (Mar. 2018). https://link.springer.com/article/10.1007/s10586-018-2366-x#citeas.Uzun, E., Agun, H. V., & Yerlikaya, T. (2013). A hybrid approach for extracting informative content from web pages. Information Processing & Management, 49(4), 928-944. doi:10.1016/j.ipm.2013.02.005Vieira, K., da Costa Carvalho, A. L., Berlt, K., de Moura, E. S., da Silva, A. S., & Freire, J. (2009). On Finding Templates on Web Collections. World Wide Web, 12(2), 171-211. doi:10.1007/s11280-009-0059-3Vieira, K., da Silva, A. S., Pinto, N., de Moura, E. S., Cavalcanti, J. M. B., & Freire, J. (2006). A fast and robust method for web page template detection and removal. Proceedings of the 15th ACM international conference on Information and knowledge management - CIKM ’06. doi:10.1145/1183614.1183654Thijs Vogels Octavian-Eugen Ganea and Carsten Eickhoff. 2018. Web2Text: Deep structured boilerplate removal. CoRR abs/1801.02607 (2018). Retrieved from http://arxiv.org/abs/1801.02607. Thijs Vogels Octavian-Eugen Ganea and Carsten Eickhoff. 2018. Web2Text: Deep structured boilerplate removal. CoRR abs/1801.02607 (2018). Retrieved from http://arxiv.org/abs/1801.02607.Wang, Y., Fang, B., Cheng, X., Guo, L., & Xu, H. (2008). Incremental web page template detection. Proceeding of the 17th international conference on World Wide Web - WWW ’08. doi:10.1145/1367497.1367749Yi, L., Liu, B., & Li, X. (2003). Eliminating noisy information in Web pages for data mining. Proceedings of the ninth ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’03. doi:10.1145/956750.956785Zheng, S., Song, R., Wen, J.-R., & Giles, C. L. (2009). Efficient record-level wrapper induction. Proceeding of the 18th ACM conference on Information and knowledge management - CIKM ’09. doi:10.1145/1645953.1645962Zheng, S., Song, R., Wen, J.-R., & Wu, D. (2007). Joint optimization of wrapper generation and template detection. Proceedings of the 13th ACM SIGKDD international conference on Knowledge discovery and data mining - KDD ’07. doi:10.1145/1281192.128128

    An Emotional Analysis of False Information in Social Media and News Articles

    Full text link
    [EN] Fake news is risky since it has been created to manipulate the readers' opinions and beliefs. In this work, we compared the language of false news to the real one of real news from an emotional perspective, considering a set of false information types (propaganda, hoax, clickbait, and satire) from social media and online news articles sources. Our experiments showed that false information has different emotional patterns in each of its types, and emotions play a key role in deceiving the reader. Based on that, we proposed a LSTM neural network model that is emotionally-infused to detect false news.The work of the second author was partially funded by the Spanish MICINN under the research project MISMISFAKEnHATE on Misinformation and Miscommunication in social media: FAKEnews and HATE speech (PGC2018-096212B-C31).Ghanem, BHH.; Rosso, P.; Rangel, F. (2020). An Emotional Analysis of False Information in Social Media and News Articles. ACM Transactions on Internet Technology. 20(2):1-18. https://doi.org/10.1145/3381750S118202Magda B. Arnold. 1960. Emotion and Personality. Columbia University Press. Magda B. Arnold. 1960. Emotion and Personality. Columbia University Press.Bhatt, G., Sharma, A., Sharma, S., Nagpal, A., Raman, B., & Mittal, A. (2018). Combining Neural, Statistical and External Features for Fake News Stance Identification. Companion of the The Web Conference 2018 on The Web Conference 2018 - WWW ’18. doi:10.1145/3184558.3191577Castillo, C., Mendoza, M., & Poblete, B. (2011). Information credibility on twitter. Proceedings of the 20th international conference on World wide web - WWW ’11. doi:10.1145/1963405.1963500Chakraborty, A., Paranjape, B., Kakarla, S., & Ganguly, N. (2016). Stop Clickbait: Detecting and preventing clickbaits in online news media. 2016 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM). doi:10.1109/asonam.2016.7752207Ekman, P. (1992). An argument for basic emotions. Cognition and Emotion, 6(3-4), 169-200. doi:10.1080/02699939208411068Ghanem, B., Rosso, P., & Rangel, F. (2018). Stance Detection in Fake News A Combined Feature Representation. Proceedings of the First Workshop on Fact Extraction and VERification (FEVER). doi:10.18653/v1/w18-5510Hochreiter, S., & Schmidhuber, J. (1997). Long Short-Term Memory. Neural Computation, 9(8), 1735-1780. doi:10.1162/neco.1997.9.8.1735Karadzhov, G., Nakov, P., MĂ rquez, L., BarrĂłn-Cedeño, A., 
 Koychev, I. (2017). Fully Automated Fact Checking Using External Sources. RANLP 2017 - Recent Advances in Natural Language Processing Meet Deep Learning. doi:10.26615/978-954-452-049-6_046Kumar, S., West, R., & Leskovec, J. (2016). Disinformation on the Web. Proceedings of the 25th International Conference on World Wide Web. doi:10.1145/2872427.2883085Li, X., Meng, W., & Yu, C. (2011). T-verifier: Verifying truthfulness of fact statements. 2011 IEEE 27th International Conference on Data Engineering. doi:10.1109/icde.2011.5767859Nyhan, B., & Reifler, J. (2010). When Corrections Fail: The Persistence of Political Misperceptions. Political Behavior, 32(2), 303-330. doi:10.1007/s11109-010-9112-2Plutchik, R. (2001). The Nature of Emotions. American Scientist, 89(4), 344. doi:10.1511/2001.4.344Popat, K., Mukherjee, S., Strötgen, J., & Weikum, G. (2016). Credibility Assessment of Textual Claims on the Web. Proceedings of the 25th ACM International on Conference on Information and Knowledge Management. doi:10.1145/2983323.2983661Poria, S., Gelbukh, A., Hussain, A., Howard, N., Das, D., & Bandyopadhyay, S. (2013). Enhanced SenticNet with Affective Labels for Concept-Based Opinion Mining. IEEE Intelligent Systems, 28(2), 31-38. doi:10.1109/mis.2013.4Rangel, F., & Rosso, P. (2016). On the impact of emotions on author profiling. Information Processing & Management, 52(1), 73-92. doi:10.1016/j.ipm.2015.06.003Rashkin, H., Choi, E., Jang, J. Y., Volkova, S., & Choi, Y. (2017). Truth of Varying Shades: Analyzing Language in Fake News and Political Fact-Checking. Proceedings of the 2017 Conference on Empirical Methods in Natural Language Processing. doi:10.18653/v1/d17-1317Ruchansky, N., Seo, S., & Liu, Y. (2017). CSI. Proceedings of the 2017 ACM on Conference on Information and Knowledge Management. doi:10.1145/3132847.3132877Tausczik, Y. R., & Pennebaker, J. W. (2009). The Psychological Meaning of Words: LIWC and Computerized Text Analysis Methods. Journal of Language and Social Psychology, 29(1), 24-54. doi:10.1177/0261927x09351676Volkova, S., Shaffer, K., Jang, J. Y., & Hodas, N. (2017). Separating Facts from Fiction: Linguistic Models to Classify Suspicious and Trusted News Posts on Twitter. Proceedings of the 55th Annual Meeting of the Association for Computational Linguistics (Volume 2: Short Papers). doi:10.18653/v1/p17-2102Zhao, Z., Resnick, P., & Mei, Q. (2015). Enquiring Minds. Proceedings of the 24th International Conference on World Wide Web. doi:10.1145/2736277.274163

    Distributed resource discovery using a context sensitive infrastructure

    Get PDF
    Distributed Resource Discovery in a World Wide Web environment using full-text indices will never scale. The distinct properties of WWW information (volume, rate of change, topical diversity) limits the scaleability of traditional approaches to distributed Resource Discovery. An approach combining metadata clustering and query routing can, on the other hand, be proven to scale much better. This paper presents the Content-Sensitive Infrastructure, which is a design building on these results. We also present an analytical framework for comparing scaleability of different distribution strategies

    The Options for UK Domestic Water Reduction: A Review

    Get PDF
    Demand pressure on UK water supplies is expected to increase in the next 20 years driven by increasing population, new housing development and reducing household size. Regionally and locally migration will also afect demand particularly in the South-East. The water reduction trends that will have the greatest reduction effect on UK consumption are: 1. For new homes; metering and new efficiencies in design and construction (e.g. low flush toilets, heating and plumbing efficiences) 2. For established housing; metering and modern washing machines

    Thesauri on the Web: current developments and trends

    Get PDF
    This article provides an overview of recent developments relating to the application of thesauri in information organisation and retrieval on the World Wide Web. It describes some recent thesaurus projects undertaken to facilitate resource description and discovery and access to wide-ranging information resources on the Internet. Types of thesauri available on the Web, thesauri integrated in databases and information retrieval systems, and multiple-thesaurus systems for cross-database searching are also discussed. Collective efforts and events in addressing the standardisation and novel applications of thesauri are briefly reviewed
    • 

    corecore