90 research outputs found

    An Assessment of the Representation of Ecosystems in Global Protected Areas Using New Maps of World Climate Regions and World Ecosystems

    Get PDF
    Representation of ecosystems in protected area networks and conservation strategies is a core principle of global conservation priority setting approaches and a commitment in Aichi Target 11 of the Convention on Biological Diversity. The 2030 Sustainable Development Goals (SDGs) explicitly call for the conservation of terrestrial, freshwater, and marine ecosystems. Accurate ecosystem distribution maps are required to assess representation of ecosystems in protected areas, but standardized, high spatial resolution, and globally comprehensive ecosystem maps have heretofore been lacking. While macroscale global ecoregions maps have been used in global conservation priority setting exercises, they do not identify distinct localized ecosystems at the occurrence (patch) level, and instead describe large ecologically meaningful areas within which additional conservation planning and management are necessary. We describe a new set of maps of globally consistent climate regions and ecosystems at a much finer spatial resolution (250 m) than existing ecological regionalizations. We then describe a global gap analysis of the representation of these ecosystems in protected areas. The new map of terrestrial World Ecosystems was derived from the objective development and integration of 1) global temperature domains, 2) global moisture domains, 3) global landforms, and 4) 2015 global vegetation and land use. These new terrestrial World Ecosystems do not include either freshwater or marine ecosystems, but analog products for the freshwater and marine domains are in development. A total of 431 World Ecosystems were identified, and of these a total of 278 units were natural or semi-natural vegetation/environment combinations, including different kinds of forestlands, shrublands, grasslands, bare areas, and ice/snow regions. The remaining classes were different kinds of croplands and settlements. Of the 278 natural and semi-natural classes, 9 were not represented in global protected areas with a strict biodiversity conservation management objective (IUCN management categories I-IV), and an additional 206 were less than 8.5% protected (half way to the 17% Aichi Target 11 goal). Forty four classes were between 8.5% and 17% protected (more than half way towards the Aichi 17% target), and only 19 classes exceeded the 17% Aichi target. However, when all protected areas (IUCN management categories I-VI plus protected areas with no IUCN designation) were included in a separate global gap analysis, representation of ecosystems increases substantially, with a third of the ecosystems exceeding the 17% Aichi target, and another third between 8.5% and 17%. The overall protection (representation) of global ecosystems in protected areas is considerably less when assessed using only strictly conserved protected areas, and more if all protected areas are included in the analysis. Protected area effectiveness should be included in further evaluations of global ecosystem protection. The ecosystems with the highest representation in protected areas were often bare or sparsely vegetated and found in inhospitable environments (e.g. cold mountains, deserts), and the eight most protected ecosystems were all snow and ice ecosystems. In addition to the global gap analysis of World Ecosystems in protected areas, we report on the representation results for the ecosystems in each biogeographic realm (Neotropical, Nearctic, Afrotropical, Palearctic, Indomalayan, Australasian, and Oceania)

    A Global Ecological Classification of Coastal Segment Units to Complement Marine Biodiversity Observation Network Assessments

    Get PDF
    A new data layer provides Coastal and Marine Ecological Classification Standard (CMECS) labels for global coastal segments at 1 km or shorter resolution. These characteristics are summarized for six US Marine Biodiversity Observation Network (MBON) sites and one MBON Pole to Pole of the Americas site in Argentina. The global coastlines CMECS classifications were produced from a partitioning of a 30 m Landsat-derived shoreline vector that was segmented into 4 million 1 km or shorter segments. Each segment was attributed with values from 10 variables that represent the ecological settings in which the coastline occurs, including properties of the adjacent water, adjacent land, and coastline itself. The 4 million segments were classified into 81,000 coastal segment units (CSUs) as unique combinations of variable classes. We summarize the process to develop the CSUs and derive summary descriptions for the seven MBON case study sites. We discuss the intended application of the new CSU data for research and management in coastal areas

    Human populations in the world's mountains: Spatio-temporal patterns and potential controls.

    Get PDF
    Changing climate and human demographics in the world's mountains will have increasingly profound environmental and societal consequences across all elevations. Quantifying current human populations in and near mountains is crucial to ensure that any interventions in these complex social-ecological systems are appropriately resourced, and that valuable ecosystems are effectively protected. However, comprehensive and reproducible analyses on this subject are lacking. Here, we develop and implement an open workflow to quantify the sensitivity of mountain population estimates over recent decades, both globally and for several sets of relevant reporting regions, to alternative input dataset combinations. Relationships between mean population density and several potential environmental covariates are also explored across elevational bands within individual mountain regions (i.e. "sub-mountain range scale"). Globally, mountain population estimates vary greatly-from 0.344 billion (31%) in 2015. A more detailed analysis using one of the population datasets (GHS-POP) revealed that in ∼35% of mountain sub-regions, population increased at least twofold over the 40-year period 1975-2015. The urban proportion of the total mountain population in 2015 ranged from 6% to 39%, depending on the combination of population and urban extent datasets used. At sub-mountain range scale, population density was found to be more strongly associated with climatic than with topographic and protected-area variables, and these relationships appear to have strengthened slightly over time. Such insights may contribute to improved predictions of future mountain population distributions under scenarios of future climatic and demographic change. Overall, our work emphasizes that irrespective of data choices, substantial human populations are likely to be directly affected by-and themselves affect-mountainous environmental and ecological change. It thereby further underlines the urgency with which the multitudinous challenges concerning the interactions between mountain climate and human societies under change must be tackled

    Heat-related cardiorespiratory mortality: effect modification by air pollution across 482 cities from 24 countries

    Get PDF
    Background Evidence on the potential interactive effects of heat and ambient air pollution on cause-specific mortality is inconclusive and limited to selected locations. Objectives We investigated the effects of heat on cardiovascular and respiratory mortality and its modification by air pollution during summer months (six consecutive hottest months) in 482 locations across 24 countries. Methods Location-specific daily death counts and exposure data (e.g., particulate matter with diameters ≤ 2.5 µm [PM2.5]) were obtained from 2000 to 2018. We used location-specific confounder-adjusted Quasi-Poisson regression with a tensor product between air temperature and the air pollutant. We extracted heat effects at low, medium, and high levels of pollutants, defined as the 5th, 50th, and 95th percentile of the location-specific pollutant concentrations. Country-specific and overall estimates were derived using a random-effects multilevel meta-analytical model. Results Heat was associated with increased cardiorespiratory mortality. Moreover, the heat effects were modified by elevated levels of all air pollutants in most locations, with stronger effects for respiratory than cardiovascular mortality. For example, the percent increase in respiratory mortality per increase in the 2-day average summer temperature from the 75th to the 99th percentile was 7.7% (95% Confidence Interval [CI] 7.6-7.7), 11.3% (95%CI 11.2-11.3), and 14.3% (95% CI 14.1-14.5) at low, medium, and high levels of PM2.5, respectively. Similarly, cardiovascular mortality increased by 1.6 (95%CI 1.5-1.6), 5.1 (95%CI 5.1-5.2), and 8.7 (95%CI 8.7-8.8) at low, medium, and high levels of O3, respectively. Discussion We observed considerable modification of the heat effects on cardiovascular and respiratory mortality by elevated levels of air pollutants. Therefore, mitigation measures following the new WHO Air Quality Guidelines are crucial to enhance better health and promote sustainable development

    Remote sensing methods for the biophysical characterization of protected areas globally: challenges and opportunities

    Get PDF
    Protected areas (PAs) are a key strategy to reverse global biodiversity declines, but they are under increasing pressure from anthropogenic activities and concomitant effects. Thus, the heterogeneous landscapes within PAs, containing a number of different habitats and ecosystem types, are in various degrees of disturbance. Characterizing habitats and ecosystems within the global protected area network requires large-scale monitoring over long time scales. This study reviews methods for the biophysical characterization of terrestrial PAs at a global scale by means of remote sensing (RS) and provides further recommendations. To this end, we first discuss the importance of taking into account the structural and functional attributes, as well as integrating a broad spectrum of variables, to account for the different ecosystem and habitat types within PAs, considering examples at local and regional scales. We then discuss potential variables, challenges and limitations of existing global environmental stratifications, as well as the biophysical characterization of PAs, and finally offer some recommendations. Computational and interoperability issues are also discussed, as well as the potential of cloud-based platforms linked to earth observations to support large-scale characterization of PAs. Using RS to characterize PAs globally is a crucial approach to help ensure sustainable development, but it requires further work before such studies are able to inform large-scale conservation actions. This study proposes 14 recommendations in order to improve existing initiatives to biophysically characterize PAs at a global scale

    GCIP water and energy budget synthesis (WEBS)

    Get PDF
    As part of the World Climate Research Program\u27s (WCRPs) Global Energy and Water-Cycle Experiment (GEWEX) Continental-scale International Project (GCIP), a preliminary water and energy budget synthesis (WEBS) was developed for the period 1996–1999 from the “best available” observations and models. Besides this summary paper, a companion CD-ROM with more extensive discussion, figures, tables, and raw data is available to the interested researcher from the GEWEX project office, the GAPP project office, or the first author. An updated online version of the CD-ROM is also available at http://ecpc.ucsd.edu/gcip/webs.htm/. Observations cannot adequately characterize or “close” budgets since too many fundamental processes are missing. Models that properly represent the many complicated atmospheric and near-surface interactions are also required. This preliminary synthesis therefore included a representative global general circulation model, regional climate model, and a macroscale hydrologic model as well as a global reanalysis and a regional analysis. By the qualitative agreement among the models and available observations, it did appear that we now qualitatively understand water and energy budgets of the Mississippi River Basin. However, there is still much quantitative uncertainty. In that regard, there did appear to be a clear advantage to using a regional analysis over a global analysis or a regional simulation over a global simulation to describe the Mississippi River Basin water and energy budgets. There also appeared to be some advantage to using a macroscale hydrologic model for at least the surface water budgets

    Architectural Building Treatments in the Mediterranean Climate from an environmental perspective; Case study of Amman City – Jordan

    Get PDF
    The paper will provide the most important architecture treatments which were adopted and applied in the Mediterranean region buildings, the paper provides an analysis of the architecture elements that have contributed to reduce the consumption of energy and a positive interaction with the environment and region climate based, a case study in Amman city – Jordan was chosen to came out of conclusions and recommendations which can help in the design process in Mediterranean region architecture. Keywords: Architectural Building Treatments, the Mediterranean Climate, environmental perspective

    Uslovi držanja, zdravlje i dobrobit muznih krava

    Get PDF
    This paper provides an overview of recent developments in rearing conditions, health and welfare issues of dairy cows. The last approximately 30 years has witnessed worldwide increasing scientific research, consumer activity, and political response towards housing condition, health and welfare issues of dairy cattle. All buildings and housing systems for dairy cattle should be designed, constructed, maintained and managed to assist in the achievement of the Five Freedoms: freedom from hunger and thirst, freedom from discomfort, freedom from pain, injury and disease, freedom to express normal behavior and freedom from fear and distress. Whether dairy cows are housed in cubicles, straw yards or cow sheds, in order to maximize their performance and to ensure satisfactory standards of welfare, the accommodation must provide the most basic behavioral and physiological needs. As an absolute minimum, the housing must provide a comfortable, clean, well drained and dry lying area together with shelter from adverse weather. Also, it must allow the cow to move freely around without risk of injury and certain diseases. If the housing system does not provide for these basic needs, then not only will health, welfare and production of dairy cattle be compromised, but it is likely that failure to comply with the welfare codes and the law relating to animal welfare will occur.Ovaj rad daje pregled dosadašnjeg napretka po pitanju uslova smeštaja, zdravlja i dobrobiti mlečnih goveda. Poslednjih 30 godina je došlo do povećanja obima istraživanja, aktivnosti kupaca uz politički odgovor kada su u pitanju uslovi smeštaja, zdravlja životinja i dobrobiti.. Svi objekti i sistemi za smeštaj moraju biti projektovani, izgrađeni i održavani da omoguće postizanje pet sloboda, koje predstavljaju logičnu osnovu ostvarenja dobrobiti životinja unutar sistema držanja čine: sloboda od gladi i žeđi, sloboda od neudobnosti, sloboda od bola, povreda i bolesti, sloboda ispoljavanja normalnog ponašanja i sloboda od straha i uznemiravanja. Bilo da se krave nalaze u boksovima, ležištima sa slamom (duboka prostirka) ili pod nastrešnicama, u cilju ispoljavanja maksimuma u proizvodnji i postizanja standarda dobrobiti, smeštaj mora zadovoljiti najosnovnije potrebe krava. Kao apsolutni minimum, smeštajem se mora obezbediti udoban, čist, ocedit i suv prostor za ležanje sa skloništem od lošeg vremena. Pored toga, mora svakoj životinji biti omogućeno da se slobodno kreće, bez rizika od povrede i određenih bolesti. Ako sistem držanja ne obezbeđuje ove osnovne potrebe, ne samo da će zdravlje, dobrobit i proizvodnja biti ugroženi, već će i zakonski propisi u pogledu dobrobiti ostati neispunjeni

    Fall 2005 Newsletter

    Get PDF
    Volume 105, Issue 4, Fall 2005GENI Newsletters became available electronically in 2009.Geography Educators’ Network of Indiana IUPU

    Assessing habitat diversity and potential areas of similarity across protected areas globally

    Get PDF
    Biophysical characterization analyses of protected areas (PA) that provide information on their ecological values and potential areas with similar characteristics are needed to make informed PA network planning and management decisions. This study combines and further develops methodologies that use remote sensing and modelling to identify habitat functional types in PAs and map similar areas at the ecoregion level. The study also develops new terrestrial habitat diversity and irreplaceability indices at habitat and PA scale that allow the comparison and ranking of PAs in terms of biophysical gradients and singular environmental conditions. Six PAs were selected to highlight and discuss the results of the proposed methodology. Both individual and composite indices should be considered when trying to compare PAs to understand the overall complexity and ecological values of each PA. Results can inform planning and management of individual and protected area networks as well as identify new areas for conservation. The information provided by the model about similar habitats outside protected areas can also help assess their representativeness and support studies to strengthen ecological connectivity. Besides systematic comparisons, detailed assessments of protected areas can also be performed using medium and high-resolution input variables. This is especially relevant for protected areas in developing countries where undertaking fieldwork is very difficult and the budget devoted to conservation is limited.European Commission European Commission Joint Research CentreBiodi- versity and Protected Areas Management (BIOPAMA) programme, an initiative of the African, Caribbean and Pacific (ACP) Group of StatesMarie Curie Actions CT-EX2020D381533-101Spanish Ministry of Universities and Next Generation European Union fund
    corecore