26 research outputs found

    AN INTEGRATED AUGMENTED REALITY METHOD TO ASSEMBLY SIMULATION AND GUIDANCE

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Teaching Accommodation Task Skills: from Human Demonstration to Robot Control via Artificial Neural Networks

    Get PDF
    A simple edge-mating task, performed automatically by accommodation control, was used to study the feasibility of using data collected during a human demonstration to train an artificial neural network (ANN) to control a common robot manipulator to complete similar tasks. The 2-dimensional (planar) edge-mating task which aligns a peg normal to a fiat table served as the basis for the investigation. A simple multi-layered perceptron (MLP) ANN with a single hidden layer and linear output nodes was trained using the back-propagation algorithm with momentum. The inputs to the ANN were the planar components of the contact force between the peg and the table. The outputs from the ANN were the planar components of a commanded velocity. The controller was architected so the ANN could learn a configuration-independent solution by operating in the tool-frame coordinates. As a baseline of performance, a simple accommodation matrix capable of completing the edge- mating task was determined and implemented in simulation and on the PUMA manipulator. The accommodation matrix was also used to synthesize various forms of training data which were used to gain insights into the function and vulnerabilities of the proposed control scheme. Human demonstration data were collected using a gravity-compensated PUMA 562 manipulator and using a custom-built planar, low-impedance motion measurement system (PLIMMS)

    Geometric Approximations and their Application to Motion Planning

    Get PDF
    Geometric approximation methods are a preferred solution to handle complexities (such as a large volume or complex features such as concavities) in geometric objects or environments containing them. Complexities often pose a computational bottleneck for applications such as motion planning. Exact resolution of these complexities might introduce other complexities such as unmanageable number of components. Hence, approximation methods provide a way to handle these complexities in a manageable state by trading off some accuracy. In this dissertation, two novel geometric approximation methods are studied: aggregation hierarchy and shape primitive skeleton. The aggregation hierarchy is a hierarchical clustering of polygonal or polyhedral objects. The shape primitive skeleton provides an approximation of bounded space as a skeleton of shape primitives. These methods are further applied to improve the performance of motion planning applications. We evaluate the methods in environments with 2D and 3D objects. The aggregation hierarchy groups nearby objects into individual objects. The hierarchy is created by varying the distance threshold that determines which objects are nearby. This creates levels of detail of the environment. The hierarchy of the obstacle space is then used to create a decom-position of the complementary space (i.e, free space) into a set of sampling regions to improve the efficiency and accuracy of the sampling operation of the sampling based motion planners. Our results show that the method can improve the efficiency (10 − 70% of planning time) of sampling based motion planning algorithms. The shape primitive skeleton inscribes a set of shape primitives (e.g., sphere, boxes) inside a bounded space such that they represent the skeleton or the connectivity of the space. We apply the shape primitive skeletons of the free space and obstacle space in motion planning problems to improve the collision detection operation. Our results also show the use of shape primitive skeleton in both spaces improves the performance of collision detectors (by 20 − 70% of collision detection time) used in motion planning algorithms. In summary, this dissertation evaluates how geometric approximation methods can be applied to improve the performance of motion planning methods, especially, sampling based motion planning method

    Design of a Multiple-User Intelligent Feeding Robot for Elderly and Disabled

    Get PDF
    The number of elderly people around the world is growing rapidly. This has led to an increase in the number of people who are seeking assistance and adequate service either at home or in long-term- care institutions to successfully accomplish their daily activities. Responding to these needs has been a burden to the health care system in terms of labour and associated costs and has motivated research in developing alternative services using new technologies. Various intelligent, and non-intelligent, machines and robots have been developed to meet the needs of elderly and people with upper limb disabilities or dysfunctions in gaining independence in eating, which is one of the most frequent and time-consuming everyday tasks. However, in almost all cases, the proposed systems are designed only for the personal use of one individual and little effort to design a multiple-user feeding robot has been previously made. The feeding requirements of elderly in environments such as senior homes, where many elderly residents dine together at least three times per day, have not been extensively researched before. The aim of this research was to develop a machine to feed multiple elderly people based on their characteristics and feeding needs, as determined through observations at a nursing home. Observations of the elderly during meal times have revealed that almost 40% of the population was totally dependent on nurses or caregivers to be fed. Most of those remaining, suffered from hand tremors, joint pain or lack of hand muscle strength, which made utensil manipulation and coordination very difficult and the eating process both messy and lengthy. In addition, more than 43% of the elderly were very slow in eating because of chewing and swallowing problems and most of the rest were slow in scooping and directing utensils toward their mouths. Consequently, one nurse could only respond to a maximum of two diners simultaneously. In order to manage the needs of all elderly diners, they required the assistance of additional staff members. The limited time allocated for each meal and the daily progression of the seniors’ disabilities also made mealtime very challenging. Based on the caregivers’ opinion, many of the elderly in such environments can benefit from a machine capable of feeding multiple users simultaneously. Since eating is a slow procedure, the idle state of the robot during one user’s chewing and swallowing time can be allotted for feeding another person who is sitting at the same table. The observations and studies have resulted in the design of a food tray, and selection of an appropriate robot and applicable user interface. The proposed system uses a 6-DOF serial articulated robot in the center of a four-seat table along with a specifically designed food tray to feed one to four people. It employs a vision interface for food detection and recognition. Building the dynamic equations of the robotic system and simulation of the system were used to verify its dynamic behaviour before any prototyping and real-time testing

    Part clamping and fixture geometric adaptability for reconfigurable assembly systems.

    Get PDF
    Masters of Science in Mechanical Engineering. University of KwaZulu-Natal. Durban, 2017.The Fourth Industrial Revolution is leading towards cyber-physical systems which justified research efforts in pursuing efficient production systems incorporating flexible grippers. Due to the complexity of assembly processes, reconfigurable assembly systems have received considerable attention in recent years. The demand for the intricate task and complicated operations, demands the need for efficient robotic manipulators that are required to manoeuvre and grasp objects effectively. Investigations were performed to understand the requirements of efficient gripping systems and existing gripping methods. A biologically inspired robotic gripper was investigated to establish conformity properties for the performance of a robotic gripper system. The Fin Ray Effect® was selected as a possible approach to improve effective gripping and reduce slippage of component handling with regards to pick and place procedures of assembly processes. As a result, the study established the optimization of self-adjusting end-effectors. The gripper system design was simulated and empirically tested. The impact of gripping surface compliance and geometric conformity was investigated. The gripper system design focused on the response of load applied to the conformity mechanism called the Fin Ray Effect®. The appendages were simulated to determine the deflection properties and stress distribution through a finite element analysis. The simulation proved that the configuration of rib structures of the appendages affected the conformity to an applied force representing an object in contact. The system was tested in real time operation and required a control system to produce an active performance of the system. A mass loading test was performed on the gripper system. The repeatability and mass handling range was determined. A dynamic operation was tested on the gripper to determine force versus time properties throughout the grasping movement for a pick and place procedure. The fluctuating forces generated through experimentation was related to the Lagrangian model describing forces experienced by a moving object. The research promoted scientific contribution to the investigation, analysis, and design of intelligent gripping systems that can potentially be implemented in the operational processes of on-demand production lines for reconfigurable assembly systems

    Pneumatic variable stiffness soft robot end effectors

    Get PDF
    Traditionally, robots have been formed from heavy rigid materials and have used stiff actuator technologies. This means they are not well suited to operation near humans due to the associated high risk of injury, should a collision occur. Additionally, rigid robots are not well suited to operation in an unstructured environment where they may come into contact with obstacles. Furthermore, traditional stiff robots can struggle to grasp delicate objects as high localised forces can damage the item being held. The relatively new field of soft robotics is inspired by nature, particularly animals which do not have skeletons but which still have the ability to move and grasp in a skilful manner. Soft robotics seeks to replicate this ability through the use of new actuation technologies and materials. This research presents the design of a variable stiffness, soft, three-fingered dexterous gripper. The gripper uses contractor pneumatic muscles to control the motion of soft fingers. The soft nature of the gripper means it can deform if it collides with obstacles, and because grasping forces are spread over a larger area the chance of damaging the object being held is reduced. The gripper has the ability to vary its stiffness depending upon how it is to be used, and in this regard two methods of varying the stiffness are explored. In the first method, the finger is formed from an extensor muscle which acts antagonistically against the contractor muscles. Increasing the total pressure in the system increases the stiffness of the fingers. The second approach uses granular jamming to vary the stiffness of the actual finger structure. This thesis explores the behaviour of both extensor and contractor pneumatic muscles and develops a new simplified mathematical model of the actuator’s behaviour. The two methods of stiffness variation are then assessed experimentally. A number of multi-fingered grippers are then designed and their kinematics determined before prototypes are presented. Control of the grippers was then explored, along with the ability to adjust the stiffness of the grasp

    Proceedings of the 9th Arab Society for Computer Aided Architectural Design (ASCAAD) international conference 2021 (ASCAAD 2021): architecture in the age of disruptive technologies: transformation and challenges.

    Get PDF
    The ASCAAD 2021 conference theme is Architecture in the age of disruptive technologies: transformation and challenges. The theme addresses the gradual shift in computational design from prototypical morphogenetic-centered associations in the architectural discourse. This imminent shift of focus is increasingly stirring a debate in the architectural community and is provoking a much needed critical questioning of the role of computation in architecture as a sole embodiment and enactment of technical dimensions, into one that rather deliberately pursues and embraces the humanities as an ultimate aspiration

    Advances in Robotics, Automation and Control

    Get PDF
    The book presents an excellent overview of the recent developments in the different areas of Robotics, Automation and Control. Through its 24 chapters, this book presents topics related to control and robot design; it also introduces new mathematical tools and techniques devoted to improve the system modeling and control. An important point is the use of rational agents and heuristic techniques to cope with the computational complexity required for controlling complex systems. Through this book, we also find navigation and vision algorithms, automatic handwritten comprehension and speech recognition systems that will be included in the next generation of productive systems developed by man
    corecore