16,686 research outputs found

    Mobile support in CSCW applications and groupware development frameworks

    No full text
    Computer Supported Cooperative Work (CSCW) is an established subset of the field of Human Computer Interaction that deals with the how people use computing technology to enhance group interaction and collaboration. Mobile CSCW has emerged as a result of the progression from personal desktop computing to the mobile device platforms that are ubiquitous today. CSCW aims to not only connect people and facilitate communication through using computers; it aims to provide conceptual models coupled with technology to manage, mediate, and assist collaborative processes. Mobile CSCW research looks to fulfil these aims through the adoption of mobile technology and consideration for the mobile user. Facilitating collaboration using mobile devices brings new challenges. Some of these challenges are inherent to the nature of the device hardware, while others focus on the understanding of how to engineer software to maximize effectiveness for the end-users. This paper reviews seminal and state-of-the-art cooperative software applications and development frameworks, and their support for mobile devices

    USAge of Groupware in Software Engineering Education at the Cscw Laboratory of University Duisburg-essen: Possibilities and Limitations

    Full text link
    This paper analyzes the application level in CSCW laboratory there are Electronic meeting rooms, Video Conferencing, Desktop Conference (Passenger), and BSCW system which conducting in The University Duisburg – Essen Germany. This analysis included short analysis and discussion about possibilities and limitation of each experiment followed by outlook how this lab can be further developed.Multi-user to Multipoint Videoconferences is introduced to cover all of devices join to the conferences. A computer network, PSTN (Public Switched Telephone Network), ISDN Phone, Wireless Infrastructures (accessed by laptop, smart phone, PDA) and videoconferences systems is proposed to be integrate

    Evaluating groupware support for software engineering students

    Get PDF
    Software engineering tasks, during both development and maintenance, typically involve teamwork using computers. Team members rarely work on isolated computers. An underlying assumption of our research is that software engineering teams will work more effectively if adequately supported by network-based groupware technology. Experience of working with groupware and evaluating groupware systems will also give software engineering students a direct appreciation of the requirements of engineering such systems. This research is investigating the provision of such network-based support for software engineering students and the impact these tools have on their groupwork. We will first describe our experiences gained through the introduction of an asynchronous virtual environment ­ SEGWorld to support groupwork during the Software Engineering Group (SEG) project undertaken by all second year undergraduates within the Department of Computer Science. Secondly we will describe our Computer Supported Cooperative Work (CSCW) module which has been introduced into the students' final year of study as a direct result of our experience with SEG, and in particular its role within Software Engineering. Within this CSCW module the students have had the opportunity to evaluate various groupware tools. This has enabled them to take a retrospective view of their experience of SEGWorld and its underlying system, BSCW, one year on. We report our findings for SEG in the form of a discussion of the hypotheses we formulated on how the SEGs would use SEGWorld, and present an initial qualitative assessment of student feedback from the CSCW module

    Designing a novel virtual collaborative environment to support collaboration in design review meetings

    Get PDF
    Project review meetings are part of the project management process and are organised to assess progress and resolve any design conflicts to avoid delays in construction. One of the key challenges during a project review meeting is to bring the stakeholders together and use this time effectively to address design issues as quickly as possible. At present, current technology solutions based on BIM or CAD are information-centric and do not allow project teams to collectively explore the design from a range of perspectives and brainstorm ideas when design conflicts are encountered. This paper presents a system architecture that can be used to support multi-functional team collaboration more effectively during such design review meetings. The proposed architecture illustrates how information-centric BIM or CAD systems can be made human- and team-centric to enhance team communication and problem solving. An implementation of the proposed system architecture has been tested for its utility, likability and usefulness during design review meetings. The evaluation results suggest that the collaboration platform has the potential to enhance collaboration among multi-functional teams

    Construction safety and digital design: a review

    Get PDF
    As digital technologies become widely used in designing buildings and infrastructure, questions arise about their impacts on construction safety. This review explores relationships between construction safety and digital design practices with the aim of fostering and directing further research. It surveys state-of-the-art research on databases, virtual reality, geographic information systems, 4D CAD, building information modeling and sensing technologies, finding various digital tools for addressing safety issues in the construction phase, but few tools to support design for construction safety. It also considers a literature on safety critical, digital and design practices that raises a general concern about ‘mindlessness’ in the use of technologies, and has implications for the emerging research agenda around construction safety and digital design. Bringing these strands of literature together suggests new kinds of interventions, such as the development of tools and processes for using digital models to promote mindfulness through multi-party collaboration on safet

    Developing front-end Web 2.0 technologies to access services, content and things in the future Internet

    Get PDF
    The future Internet is expected to be composed of a mesh of interoperable web services accessible from all over the web. This approach has not yet caught on since global user?service interaction is still an open issue. This paper states one vision with regard to next-generation front-end Web 2.0 technology that will enable integrated access to services, contents and things in the future Internet. In this paper, we illustrate how front-ends that wrap traditional services and resources can be tailored to the needs of end users, converting end users into prosumers (creators and consumers of service-based applications). To do this, we propose an architecture that end users without programming skills can use to create front-ends, consult catalogues of resources tailored to their needs, easily integrate and coordinate front-ends and create composite applications to orchestrate services in their back-end. The paper includes a case study illustrating that current user-centred web development tools are at a very early stage of evolution. We provide statistical data on how the proposed architecture improves these tools. This paper is based on research conducted by the Service Front End (SFE) Open Alliance initiative

    Enhancing knowledge management in online collaborative learning

    Get PDF
    This study aims to explore two crucial aspects of collaborative work and learning: on the one hand, the importance of enabling collaborative learning applications to capture and structure the information generated by group activity and, on the other hand, to extract the relevant knowledge in order to provide learners and tutors with efficient awareness, feedback and support as regards group performance and collaboration. To this end, in this paper we first propose a conceptual model for data analysis and management that identifies and classifies the many kinds of indicators that describe collaboration and learning into high-level aspects of collaboration. Then, we provide a computational platform that, at a first step, collects and classifies both the event information generated asynchronously from the users' actions and the labeled dialogues from the synchronous collaboration according to these indicators. This information is then analyzed in next steps to eventually extract and present to participants the relevant knowledge about the collaboration. The ultimate aim of this platform is to efficiently embed information and knowledge into collaborative learning applications. We eventually suggest a generalization of our approach to be used in diverse collaborative learning situations and domains

    Distributed-Pair Programming can work well and is not just Distributed Pair-Programming

    Full text link
    Background: Distributed Pair Programming can be performed via screensharing or via a distributed IDE. The latter offers the freedom of concurrent editing (which may be helpful or damaging) and has even more awareness deficits than screen sharing. Objective: Characterize how competent distributed pair programmers may handle this additional freedom and these additional awareness deficits and characterize the impacts on the pair programming process. Method: A revelatory case study, based on direct observation of a single, highly competent distributed pair of industrial software developers during a 3-day collaboration. We use recordings of these sessions and conceptualize the phenomena seen. Results: 1. Skilled pairs may bridge the awareness deficits without visible obstruction of the overall process. 2. Skilled pairs may use the additional editing freedom in a useful limited fashion, resulting in potentially better fluency of the process than local pair programming. Conclusion: When applied skillfully in an appropriate context, distributed-pair programming can (not will!) work at least as well as local pair programming

    Student-Centered Learning: Functional Requirements for Integrated Systems to Optimize Learning

    Get PDF
    The realities of the 21st-century learner require that schools and educators fundamentally change their practice. "Educators must produce college- and career-ready graduates that reflect the future these students will face. And, they must facilitate learning through means that align with the defining attributes of this generation of learners."Today, we know more than ever about how students learn, acknowledging that the process isn't the same for every student and doesn't remain the same for each individual, depending upon maturation and the content being learned. We know that students want to progress at a pace that allows them to master new concepts and skills, to access a variety of resources, to receive timely feedback on their progress, to demonstrate their knowledge in multiple ways and to get direction, support and feedback from—as well as collaborate with—experts, teachers, tutors and other students.The result is a growing demand for student-centered, transformative digital learning using competency education as an underpinning.iNACOL released this paper to illustrate the technical requirements and functionalities that learning management systems need to shift toward student-centered instructional models. This comprehensive framework will help districts and schools determine what systems to use and integrate as they being their journey toward student-centered learning, as well as how systems integration aligns with their organizational vision, educational goals and strategic plans.Educators can use this report to optimize student learning and promote innovation in their own student-centered learning environments. The report will help school leaders understand the complex technologies needed to optimize personalized learning and how to use data and analytics to improve practices, and can assist technology leaders in re-engineering systems to support the key nuances of student-centered learning
    • 

    corecore