84 research outputs found

    Measuring the impact of COVID-19 on hospital care pathways

    Get PDF
    Care pathways in hospitals around the world reported significant disruption during the recent COVID-19 pandemic but measuring the actual impact is more problematic. Process mining can be useful for hospital management to measure the conformance of real-life care to what might be considered normal operations. In this study, we aim to demonstrate that process mining can be used to investigate process changes associated with complex disruptive events. We studied perturbations to accident and emergency (A &E) and maternity pathways in a UK public hospital during the COVID-19 pandemic. Co-incidentally the hospital had implemented a Command Centre approach for patient-flow management affording an opportunity to study both the planned improvement and the disruption due to the pandemic. Our study proposes and demonstrates a method for measuring and investigating the impact of such planned and unplanned disruptions affecting hospital care pathways. We found that during the pandemic, both A &E and maternity pathways had measurable reductions in the mean length of stay and a measurable drop in the percentage of pathways conforming to normative models. There were no distinctive patterns of monthly mean values of length of stay nor conformance throughout the phases of the installation of the hospital’s new Command Centre approach. Due to a deficit in the available A &E data, the findings for A &E pathways could not be interpreted

    Modern data analytics in the cloud era

    Get PDF
    Cloud Computing ist die dominante Technologie des letzten Jahrzehnts. Die Benutzerfreundlichkeit der verwalteten Umgebung in Kombination mit einer nahezu unbegrenzten Menge an Ressourcen und einem nutzungsabhängigen Preismodell ermöglicht eine schnelle und kosteneffiziente Projektrealisierung für ein breites Nutzerspektrum. Cloud Computing verändert auch die Art und Weise wie Software entwickelt, bereitgestellt und genutzt wird. Diese Arbeit konzentriert sich auf Datenbanksysteme, die in der Cloud-Umgebung eingesetzt werden. Wir identifizieren drei Hauptinteraktionspunkte der Datenbank-Engine mit der Umgebung, die veränderte Anforderungen im Vergleich zu traditionellen On-Premise-Data-Warehouse-Lösungen aufweisen. Der erste Interaktionspunkt ist die Interaktion mit elastischen Ressourcen. Systeme in der Cloud sollten Elastizität unterstützen, um den Lastanforderungen zu entsprechen und dabei kosteneffizient zu sein. Wir stellen einen elastischen Skalierungsmechanismus für verteilte Datenbank-Engines vor, kombiniert mit einem Partitionsmanager, der einen Lastausgleich bietet und gleichzeitig die Neuzuweisung von Partitionen im Falle einer elastischen Skalierung minimiert. Darüber hinaus führen wir eine Strategie zum initialen Befüllen von Puffern ein, die es ermöglicht, skalierte Ressourcen unmittelbar nach der Skalierung auszunutzen. Cloudbasierte Systeme sind von fast überall aus zugänglich und verfügbar. Daten werden häufig von zahlreichen Endpunkten aus eingespeist, was sich von ETL-Pipelines in einer herkömmlichen Data-Warehouse-Lösung unterscheidet. Viele Benutzer verzichten auf die Definition von strikten Schemaanforderungen, um Transaktionsabbrüche aufgrund von Konflikten zu vermeiden oder um den Ladeprozess von Daten zu beschleunigen. Wir führen das Konzept der PatchIndexe ein, die die Definition von unscharfen Constraints ermöglichen. PatchIndexe verwalten Ausnahmen zu diesen Constraints, machen sie für die Optimierung und Ausführung von Anfragen nutzbar und bieten effiziente Unterstützung bei Datenaktualisierungen. Das Konzept kann auf beliebige Constraints angewendet werden und wir geben Beispiele für unscharfe Eindeutigkeits- und Sortierconstraints. Darüber hinaus zeigen wir, wie PatchIndexe genutzt werden können, um fortgeschrittene Constraints wie eine unscharfe Multi-Key-Partitionierung zu definieren, die eine robuste Anfrageperformance bei Workloads mit unterschiedlichen Partitionsanforderungen bietet. Der dritte Interaktionspunkt ist die Nutzerinteraktion. Datengetriebene Anwendungen haben sich in den letzten Jahren verändert. Neben den traditionellen SQL-Anfragen für Business Intelligence sind heute auch datenwissenschaftliche Anwendungen von großer Bedeutung. In diesen Fällen fungiert das Datenbanksystem oft nur als Datenlieferant, während der Rechenaufwand in dedizierten Data-Science- oder Machine-Learning-Umgebungen stattfindet. Wir verfolgen das Ziel, fortgeschrittene Analysen in Richtung der Datenbank-Engine zu verlagern und stellen das Grizzly-Framework als DataFrame-zu-SQL-Transpiler vor. Auf dieser Grundlage identifizieren wir benutzerdefinierte Funktionen (UDFs) und maschinelles Lernen (ML) als wichtige Aufgaben, die von einer tieferen Integration in die Datenbank-Engine profitieren würden. Daher untersuchen und bewerten wir Ansätze für die datenbankinterne Ausführung von Python-UDFs und datenbankinterne ML-Inferenz.Cloud computing has been the groundbreaking technology of the last decade. The ease-of-use of the managed environment in combination with nearly infinite amount of resources and a pay-per-use price model enables fast and cost-efficient project realization for a broad range of users. Cloud computing also changes the way software is designed, deployed and used. This thesis focuses on database systems deployed in the cloud environment. We identify three major interaction points of the database engine with the environment that show changed requirements compared to traditional on-premise data warehouse solutions. First, software is deployed on elastic resources. Consequently, systems should support elasticity in order to match workload requirements and be cost-effective. We present an elastic scaling mechanism for distributed database engines, combined with a partition manager that provides load balancing while minimizing partition reassignments in the case of elastic scaling. Furthermore we introduce a buffer pre-heating strategy that allows to mitigate a cold start after scaling and leads to an immediate performance benefit using scaling. Second, cloud based systems are accessible and available from nearly everywhere. Consequently, data is frequently ingested from numerous endpoints, which differs from bulk loads or ETL pipelines in a traditional data warehouse solution. Many users do not define database constraints in order to avoid transaction aborts due to conflicts or to speed up data ingestion. To mitigate this issue we introduce the concept of PatchIndexes, which allow the definition of approximate constraints. PatchIndexes maintain exceptions to constraints, make them usable in query optimization and execution and offer efficient update support. The concept can be applied to arbitrary constraints and we provide examples of approximate uniqueness and approximate sorting constraints. Moreover, we show how PatchIndexes can be exploited to define advanced constraints like an approximate multi-key partitioning, which offers robust query performance over workloads with different partition key requirements. Third, data-centric workloads changed over the last decade. Besides traditional SQL workloads for business intelligence, data science workloads are of significant importance nowadays. For these cases the database system might only act as data delivery, while the computational effort takes place in data science or machine learning (ML) environments. As this workflow has several drawbacks, we follow the goal of pushing advanced analytics towards the database engine and introduce the Grizzly framework as a DataFrame-to-SQL transpiler. Based on this we identify user-defined functions (UDFs) and machine learning inference as important tasks that would benefit from a deeper engine integration and investigate approaches to push these operations towards the database engine

    Adaptive Automated Machine Learning

    Get PDF
    The ever-growing demand for machine learning has led to the development of automated machine learning (AutoML) systems that can be used off the shelf by non-experts. Further, the demand for ML applications with high predictive performance exceeds the number of machine learning experts and makes the development of AutoML systems necessary. Automated Machine Learning tackles the problem of finding machine learning models with high predictive performance. Existing approaches incorporating deep learning techniques assume that all data is available at the beginning of the training process (offline learning). They configure and optimise a pipeline of preprocessing, feature engineering, and model selection by choosing suitable hyperparameters in each model pipeline step. Furthermore, they assume that the user is fully aware of the choice and, thus, the consequences of the underlying metric (such as precision, recall, or F1-measure). By variation of this metric, the search for suitable configurations and thus the adaptation of algorithms can be tailored to the user’s needs. With the creation of a vast amount of data from all kinds of sources every day, our capability to process and understand these data sets in a single batch is no longer viable. By training machine learning models incrementally (i.ex. online learning), the flood of data can be processed sequentially within data streams. However, if one assumes an online learning scenario, where an AutoML instance executes on evolving data streams, the question of the best model and its configuration remains open. In this work, we address the adaptation of AutoML in an offline learning scenario toward a certain utility an end-user might pursue as well as the adaptation of AutoML towards evolving data streams in an online learning scenario with three main contributions: 1. We propose a System that allows the adaptation of AutoML and the search for neural architectures towards a particular utility an end-user might pursue. 2. We introduce an online deep learning framework that fosters the research of deep learning models under the online learning assumption and enables the automated search for neural architectures. 3. We introduce an online AutoML framework that allows the incremental adaptation of ML models. We evaluate the contributions individually, in accordance with predefined requirements and to state-of-the- art evaluation setups. The outcomes lead us to conclude that (i) AutoML, as well as systems for neural architecture search, can be steered towards individual utilities by learning a designated ranking model from pairwise preferences and using the latter as the target function for the offline learning scenario; (ii) architectual small neural networks are in general suitable assuming an online learning scenario; (iii) the configuration of machine learning pipelines can be automatically be adapted to ever-evolving data streams and lead to better performances

    Differentially Private Synthetic Data Using KD-Trees

    Full text link
    Creation of a synthetic dataset that faithfully represents the data distribution and simultaneously preserves privacy is a major research challenge. Many space partitioning based approaches have emerged in recent years for answering statistical queries in a differentially private manner. However, for synthetic data generation problem, recent research has been mainly focused on deep generative models. In contrast, we exploit space partitioning techniques together with noise perturbation and thus achieve intuitive and transparent algorithms. We propose both data independent and data dependent algorithms for ϵ\epsilon-differentially private synthetic data generation whose kernel density resembles that of the real dataset. Additionally, we provide theoretical results on the utility-privacy trade-offs and show how our data dependent approach overcomes the curse of dimensionality and leads to a scalable algorithm. We show empirical utility improvements over the prior work, and discuss performance of our algorithm on a downstream classification task on a real dataset

    Geographic information extraction from texts

    Get PDF
    A large volume of unstructured texts, containing valuable geographic information, is available online. This information – provided implicitly or explicitly – is useful not only for scientific studies (e.g., spatial humanities) but also for many practical applications (e.g., geographic information retrieval). Although large progress has been achieved in geographic information extraction from texts, there are still unsolved challenges and issues, ranging from methods, systems, and data, to applications and privacy. Therefore, this workshop will provide a timely opportunity to discuss the recent advances, new ideas, and concepts but also identify research gaps in geographic information extraction

    Research Paper: Process Mining and Synthetic Health Data: Reflections and Lessons Learnt

    Get PDF
    Analysing the treatment pathways in real-world health data can provide valuable insight for clinicians and decision-makers. However, the procedures for acquiring real-world data for research can be restrictive, time-consuming and risks disclosing identifiable information. Synthetic data might enable representative analysis without direct access to sensitive data. In the first part of our paper, we propose an approach for grading synthetic data for process analysis based on its fidelity to relationships found in real-world data. In the second part, we apply our grading approach by assessing cancer patient pathways in a synthetic healthcare dataset (The Simulacrum provided by the English National Cancer Registration and Analysis Service) using process mining. Visualisations of the patient pathways within the synthetic data appear plausible, showing relationships between events confirmed in the underlying non-synthetic data. Data quality issues are also present within the synthetic data which reflect real-world problems and artefacts from the synthetic dataset’s creation. Process mining of synthetic data in healthcare is an emerging field with novel challenges. We conclude that researchers should be aware of the risks when extrapolating results produced from research on synthetic data to real-world scenarios and assess findings with analysts who are able to view the underlying data

    State Management for Efficient Event Pattern Detection

    Get PDF
    Event Stream Processing (ESP) Systeme überwachen kontinuierliche Datenströme, um benutzerdefinierte Queries auszuwerten. Die Herausforderung besteht darin, dass die Queryverarbeitung zustandsbehaftet ist und die Anzahl von Teilübereinstimmungen mit der Größe der verarbeiteten Events exponentiell anwächst. Die Dynamik von Streams und die Notwendigkeit, entfernte Daten zu integrieren, erschweren die Zustandsverwaltung. Erstens liefern heterogene Eventquellen Streams mit unvorhersehbaren Eingaberaten und Queryselektivitäten. Während Spitzenzeiten ist eine erschöpfende Verarbeitung unmöglich, und die Systeme müssen auf eine Best-Effort-Verarbeitung zurückgreifen. Zweitens erfordern Queries möglicherweise externe Daten, um ein bestimmtes Event für eine Query auszuwählen. Solche Abhängigkeiten sind problematisch: Das Abrufen der Daten unterbricht die Stream-Verarbeitung. Ohne eine Eventauswahl auf Grundlage externer Daten wird das Wachstum von Teilübereinstimmungen verstärkt. In dieser Dissertation stelle ich Strategien für optimiertes Zustandsmanagement von ESP Systemen vor. Zuerst ermögliche ich eine Best-Effort-Verarbeitung mittels Load Shedding. Dabei werden sowohl Eingabeeevents als auch Teilübereinstimmungen systematisch verworfen, um eine Latenzschwelle mit minimalem Qualitätsverlust zu garantieren. Zweitens integriere ich externe Daten, indem ich das Abrufen dieser von der Verwendung in der Queryverarbeitung entkoppele. Mit einem effizienten Caching-Mechanismus vermeide ich Unterbrechungen durch Übertragungslatenzen. Dazu werden externe Daten basierend auf ihrer erwarteten Verwendung vorab abgerufen und mittels Lazy Evaluation bei der Eventauswahl berücksichtigt. Dabei wird ein Kostenmodell verwendet, um zu bestimmen, wann welche externen Daten abgerufen und wie lange sie im Cache aufbewahrt werden sollen. Ich habe die Effektivität und Effizienz der vorgeschlagenen Strategien anhand von synthetischen und realen Daten ausgewertet und unter Beweis gestellt.Event stream processing systems continuously evaluate queries over event streams to detect user-specified patterns with low latency. However, the challenge is that query processing is stateful and it maintains partial matches that grow exponentially in the size of processed events. State management is complicated by the dynamicity of streams and the need to integrate remote data. First, heterogeneous event sources yield dynamic streams with unpredictable input rates, data distributions, and query selectivities. During peak times, exhaustive processing is unreasonable, and systems shall resort to best-effort processing. Second, queries may require remote data to select a specific event for a pattern. Such dependencies are problematic: Fetching the remote data interrupts the stream processing. Yet, without event selection based on remote data, the growth of partial matches is amplified. In this dissertation, I present strategies for optimised state management in event pattern detection. First, I enable best-effort processing with load shedding that discards both input events and partial matches. I carefully select the shedding elements to satisfy a latency bound while striving for a minimal loss in result quality. Second, to efficiently integrate remote data, I decouple the fetching of remote data from its use in query evaluation by a caching mechanism. To this end, I hide the transmission latency by prefetching remote data based on anticipated use and by lazy evaluation that postpones the event selection based on remote data to avoid interruptions. A cost model is used to determine when to fetch which remote data items and how long to keep them in the cache. I evaluated the above techniques with queries over synthetic and real-world data. I show that the load shedding technique significantly improves the recall of pattern detection over baseline approaches, while the technique for remote data integration significantly reduces the pattern detection latency

    A novel privacy paradigm for improving serial data privacy

    Get PDF
    Protecting the privacy of individuals is of utmost concern in today’s society, as inscribed and governed by the prevailing privacy laws, such as GDPR. In serial data, bits of data are continuously released, but their combined effect may result in a privacy breach in the whole serial publication. Protecting serial data is crucial for preserving them from adversaries. Previous approaches provide privacy for relational data and serial data, but many loopholes exist when dealing with multiple sensitive values. We address these problems by introducing a novel privacy approach that limits the risk of privacy disclosure in republication and gives better privacy with much lower perturbation rates. Existing techniques provide a strong privacy guarantee against attacks on data privacy; however, in serial publication, the chances of attack still exist due to the continuous addition and deletion of data. In serial data, proper countermeasures for tackling attacks such as correlation attacks have not been taken, due to which serial publication is still at risk. Moreover, protecting privacy is a significant task due to the critical absence of sensitive values while dealing with multiple sensitive values. Due to this critical absence, signatures change in every release, which is a reason for attacks. In this paper, we introduce a novel approach in order to counter the composition attack and the transitive composition attack and we prove that the proposed approach is better than the existing state-of-the-art techniques. Our paper establishes the result with a systematic examination of the republication dilemma. Finally, we evaluate our work using benchmark datasets, and the results show the efficacy of the proposed technique

    Investigating the attainment of optimum data quality for EHR Big Data: proposing a new methodological approach

    Get PDF
    The value derivable from the use of data is continuously increasing since some years. Both commercial and non-commercial organisations have realised the immense benefits that might be derived if all data at their disposal could be analysed and form the basis of decision taking. The technological tools required to produce, capture, store, transmit and analyse huge amounts of data form the background to the development of the phenomenon of Big Data. With Big Data, the aim is to be able to generate value from huge amounts of data, often in non-structured format and produced extremely frequently. However, the potential value derivable depends on general level of governance of data, more precisely on the quality of the data. The field of data quality is well researched for traditional data uses but is still in its infancy for the Big Data context. This dissertation focused on investigating effective methods to enhance data quality for Big Data. The principal deliverable of this research is in the form of a methodological approach which can be used to optimize the level of data quality in the Big Data context. Since data quality is contextual, (that is a non-generalizable field), this research study focuses on applying the methodological approach in one use case, in terms of the Electronic Health Records (EHR). The first main contribution to knowledge of this study systematically investigates which data quality dimensions (DQDs) are most important for EHR Big Data. The two most important dimensions ascertained by the research methods applied in this study are accuracy and completeness. These are two well-known dimensions, and this study confirms that they are also very important for EHR Big Data. The second important contribution to knowledge is an investigation into whether Artificial Intelligence with a special focus upon machine learning could be used in improving the detection of dirty data, focusing on the two data quality dimensions of accuracy and completeness. Regression and clustering algorithms proved to be more adequate for accuracy and completeness related issues respectively, based on the experiments carried out. However, the limits of implementing and using machine learning algorithms for detecting data quality issues for Big Data were also revealed and discussed in this research study. It can safely be deduced from the knowledge derived from this part of the research study that use of machine learning for enhancing data quality issues detection is a promising area but not yet a panacea which automates this entire process. The third important contribution is a proposed guideline to undertake data repairs most efficiently for Big Data; this involved surveying and comparing existing data cleansing algorithms against a prototype developed for data reparation. Weaknesses of existing algorithms are highlighted and are considered as areas of practice which efficient data reparation algorithms must focus upon. Those three important contributions form the nucleus for a new data quality methodological approach which could be used to optimize Big Data quality, as applied in the context of EHR. Some of the activities and techniques discussed through the proposed methodological approach can be transposed to other industries and use cases to a large extent. The proposed data quality methodological approach can be used by practitioners of Big Data Quality who follow a data-driven strategy. As opposed to existing Big Data quality frameworks, the proposed data quality methodological approach has the advantage of being more precise and specific. It gives clear and proven methods to undertake the main identified stages of a Big Data quality lifecycle and therefore can be applied by practitioners in the area. This research study provides some promising results and deliverables. It also paves the way for further research in the area. Technical and technological changes in Big Data is rapidly evolving and future research should be focusing on new representations of Big Data, the real-time streaming aspect, and replicating same research methods used in this current research study but on new technologies to validate current results
    • …
    corecore