56,193 research outputs found

    Designing Refillable Packaging: A Qualitative Approach

    Get PDF
    In recognition of the fact that current packaging design fails to address the resource reductions needed to support the sustainability agenda (INCPEN, 2001; Environmental Services Association, 2004), a 2 year collaborative research project between Loughborough University and The Boots Company, funded by DEFRA, was set up to investigate the feasibility of developing refillable packaging systems which appeal to the consumer whilst reducing the overall sustainability impact. The overall aim of the project – ‘Refillable Packaging Systems’, reported on in this paper was to develop a refillable packaging system for a ‘body wash’ product and to investigate its feasibility with respect to consumer acceptance (female customers, aged 21-40) and sustainability improvements. In order to achieve the project aim a broad range of qualitative methods were used. This paper details the methods used to collate background understanding, develop design concepts and test the viability of the design solutions. It reflects on why they were used, how effective they were and on the benefits of combining these different methods at different stages. The paper concludes that combining together an array of design related qualitative methods, of the nature described, can produce rich and valuable outcomes. The project demonstrates that this approach can lead to the development of a more detailed understanding of the topic under investigation and open up discussion by creating demonstrator products which can be handled, critiqued and examined. Keywords: Packaging; Design Methods; Questionnaire; Visual Templates; Prototyping; Consumer Workshops</p

    ICS Materials. Towards a re-Interpretation of material qualities through interactive, connected, and smart materials.

    Get PDF
    The domain of materials for design is changing under the influence of an increased technological advancement, miniaturization and democratization. Materials are becoming connected, augmented, computational, interactive, active, responsive, and dynamic. These are ICS Materials, an acronym that stands for Interactive, Connected and Smart. While labs around the world are experimenting with these new materials, there is the need to reflect on their potentials and impact on design. This paper is a first step in this direction: to interpret and describe the qualities of ICS materials, considering their experiential pattern, their expressive sensorial dimension, and their aesthetic of interaction. Through case studies, we analyse and classify these emerging ICS Materials and identified common characteristics, and challenges, e.g. the ability to change over time or their programmability by the designers and users. On that basis, we argue there is the need to reframe and redesign existing models to describe ICS materials, making their qualities emerge

    Bringing tabletop technologies to kindergarten children

    Get PDF
    Taking computer technology away from the desktop and into a more physical, manipulative space, is known that provide many benefits and is generally considered to result in a system that is easier to learn and more natural to use. This paper describes a design solution that allows kindergarten children to take the benefits of the new pedagogical possibilities that tangible interaction and tabletop technologies offer for manipulative learning. After analysis of children's cognitive and psychomotor skills, we have designed and tuned a prototype game that is suitable for children aged 3 to 4 years old. Our prototype uniquely combines low cost tangible interaction and tabletop technology with tutored learning. The design has been based on the observation of children using the technology, letting them freely play with the application during three play sessions. These observational sessions informed the design decisions for the game whilst also confirming the children's enjoyment of the prototype

    Supporting Computer-supported collaborative work (CSCW) in conceptual design

    Get PDF
    In order to gain a better understanding of online conceptual collaborative design processes this paper investigates how student designers make use of a shared virtual synchronous environment when engaged in conceptual design. The software enables users to talk to each other and share sketches when they are remotely located. The paper describes a novel methodology for observing and analysing collaborative design processes by adapting the concepts of grounded theory. Rather than concentrating on narrow aspects of the final artefacts, emerging “themes” are generated that provide a broader picture of collaborative design process and context descriptions. Findings on the themes of “grounding – mutual understanding” and “support creativity” complement findings from other research, while important themes associated with “near-synchrony” have not been emphasised in other research. From the study, a series of design recommendations are made for the development of tools to support online computer-supported collaborative work in design using a shared virtual environment

    Include 2011 : The role of inclusive design in making social innovation happen.

    Get PDF
    Include is the biennial conference held at the RCA and hosted by the Helen Hamlyn Centre for Design. The event is directed by Jo-Anne Bichard and attracts an international delegation

    Education innovation through material innovation in primary education : the grow-it-yourself workshop

    Get PDF
    In recent years more STEM (Science, Technology, Engineering and Mathematics) topics have been incorporated in mainstream public education. Although the benefits of STEM instruction are broadly recognised in secondary school curricula, STEM topics in primary education are rather limited, leaving a gap in manipulative skills building and in preparation processes for the next school level. This paper reflects on the outcomes of a design workshop attended by 12 primary school students (9 to 12 years old) in Belgium. Mycelium, a fungi-based natural material now used in innovative sustainable applications, served as a means to introduce early learners engineering basics through self-made learning tools. Students grew their own 3-D structures to build a 'Grow-It-Yourself biodegradable playground using mycelium as a primary source. The paper stems from an in-progress research that investigates the opportunities of how mycelium as a material innovation can be used as a medium to create innovation in primary education through a learning-by-design approach. Reflections on the workshop's instructional guidelines are included along with an extension of the call for support for primary school teachers delivering STEM topics in their classes
    • 

    corecore