101 research outputs found

    A Study of Automatic Metrics for the Evaluation of Natural Language Explanations

    Get PDF
    As transparency becomes key for robotics and AI, it will be necessary to evaluate the methods through which transparency is provided, including automatically generated natural language (NL) explanations. Here, we explore parallels between the generation of such explanations and the much-studied field of evaluation of Natural Language Generation (NLG). Specifically, we investigate which of the NLG evaluation measures map well to explanations. We present the ExBAN corpus: a crowd-sourced corpus of NL explanations for Bayesian Networks. We run correlations comparing human subjective ratings with NLG automatic measures. We find that embedding-based automatic NLG evaluation methods, such as BERTScore and BLEURT, have a higher correlation with human ratings, compared to word-overlap metrics, such as BLEU and ROUGE. This work has implications for Explainable AI and transparent robotic and autonomous systems.Comment: Accepted at EACL 202

    Evil from Within: Machine Learning Backdoors through Hardware Trojans

    Full text link
    Backdoors pose a serious threat to machine learning, as they can compromise the integrity of security-critical systems, such as self-driving cars. While different defenses have been proposed to address this threat, they all rely on the assumption that the hardware on which the learning models are executed during inference is trusted. In this paper, we challenge this assumption and introduce a backdoor attack that completely resides within a common hardware accelerator for machine learning. Outside of the accelerator, neither the learning model nor the software is manipulated, so that current defenses fail. To make this attack practical, we overcome two challenges: First, as memory on a hardware accelerator is severely limited, we introduce the concept of a minimal backdoor that deviates as little as possible from the original model and is activated by replacing a few model parameters only. Second, we develop a configurable hardware trojan that can be provisioned with the backdoor and performs a replacement only when the specific target model is processed. We demonstrate the practical feasibility of our attack by implanting our hardware trojan into the Xilinx Vitis AI DPU, a commercial machine-learning accelerator. We configure the trojan with a minimal backdoor for a traffic-sign recognition system. The backdoor replaces only 30 (0.069%) model parameters, yet it reliably manipulates the recognition once the input contains a backdoor trigger. Our attack expands the hardware circuit of the accelerator by 0.24% and induces no run-time overhead, rendering a detection hardly possible. Given the complex and highly distributed manufacturing process of current hardware, our work points to a new threat in machine learning that is inaccessible to current security mechanisms and calls for hardware to be manufactured only in fully trusted environments

    How Good Is NLP? A Sober Look at NLP Tasks through the Lens of Social Impact

    Full text link
    Recent years have seen many breakthroughs in natural language processing (NLP), transitioning it from a mostly theoretical field to one with many real-world applications. Noting the rising number of applications of other machine learning and AI techniques with pervasive societal impact, we anticipate the rising importance of developing NLP technologies for social good. Inspired by theories in moral philosophy and global priorities research, we aim to promote a guideline for social good in the context of NLP. We lay the foundations via the moral philosophy definition of social good, propose a framework to evaluate the direct and indirect real-world impact of NLP tasks, and adopt the methodology of global priorities research to identify priority causes for NLP research. Finally, we use our theoretical framework to provide some practical guidelines for future NLP research for social good. Our data and code are available at http://github.com/zhijing-jin/nlp4sg_acl2021. In addition, we curate a list of papers and resources on NLP for social good at https://github.com/zhijing-jin/NLP4SocialGood_Papers.Comment: Findings of ACL 2021; also accepted at the NLP for Positive Impact workshop@ACL 202

    Goal reasoning for autonomous agents using automated planning

    Get PDF
    Mención Internacional en el título de doctorAutomated planning deals with the task of finding a sequence of actions, namely a plan, which achieves a goal from a given initial state. Most planning research consider goals are provided by a external user, and agents just have to find a plan to achieve them. However, there exist many real world domains where agents should not only reason about their actions but also about their goals, generating new ones or changing them according to the perceived environment. In this thesis we aim at broadening the goal reasoning capabilities of planningbased agents, both when acting in isolation and when operating in the same environment as other agents. In single-agent settings, we firstly explore a special type of planning tasks where we aim at discovering states that fulfill certain cost-based requirements with respect to a given set of goals. By computing these states, agents are able to solve interesting tasks such as find escape plans that move agents in to safe places, hide their true goal to a potential observer, or anticipate dynamically arriving goals. We also show how learning the environment’s dynamics may help agents to solve some of these tasks. Experimental results show that these states can be quickly found in practice, making agents able to solve new planning tasks and helping them in solving some existing ones. In multi-agent settings, we study the automated generation of goals based on other agents’ behavior. We focus on competitive scenarios, where we are interested in computing counterplans that prevent opponents from achieving their goals. We frame these tasks as counterplanning, providing theoretical properties of the counterplans that solve them. We also show how agents can benefit from computing some of the states we propose in the single-agent setting to anticipate their opponent’s movements, thus increasing the odds of blocking them. Experimental results show how counterplans can be found in different environments ranging from competitive planning domains to real-time strategy games.Programa de Doctorado en Ciencia y Tecnología Informática por la Universidad Carlos III de MadridPresidenta: Eva Onaindía de la Rivaherrera.- Secretario: Ángel García Olaya.- Vocal: Mark Robert

    Explainable methods for knowledge graph refinement and exploration via symbolic reasoning

    Get PDF
    Knowledge Graphs (KGs) have applications in many domains such as Finance, Manufacturing, and Healthcare. While recent efforts have created large KGs, their content is far from complete and sometimes includes invalid statements. Therefore, it is crucial to refine the constructed KGs to enhance their coverage and accuracy via KG completion and KG validation. It is also vital to provide human-comprehensible explanations for such refinements, so that humans have trust in the KG quality. Enabling KG exploration, by search and browsing, is also essential for users to understand the KG value and limitations towards down-stream applications. However, the large size of KGs makes KG exploration very challenging. While the type taxonomy of KGs is a useful asset along these lines, it remains insufficient for deep exploration. In this dissertation we tackle the aforementioned challenges of KG refinement and KG exploration by combining logical reasoning over the KG with other techniques such as KG embedding models and text mining. Through such combination, we introduce methods that provide human-understandable output. Concretely, we introduce methods to tackle KG incompleteness by learning exception-aware rules over the existing KG. Learned rules are then used in inferring missing links in the KG accurately. Furthermore, we propose a framework for constructing human-comprehensible explanations for candidate facts from both KG and text. Extracted explanations are used to insure the validity of KG facts. Finally, to facilitate KG exploration, we introduce a method that combines KG embeddings with rule mining to compute informative entity clusters with explanations.Wissensgraphen haben viele Anwendungen in verschiedenen Bereichen, beispielsweise im Finanz- und Gesundheitswesen. Wissensgraphen sind jedoch unvollständig und enthalten auch ungültige Daten. Hohe Abdeckung und Korrektheit erfordern neue Methoden zur Wissensgraph-Erweiterung und Wissensgraph-Validierung. Beide Aufgaben zusammen werden als Wissensgraph-Verfeinerung bezeichnet. Ein wichtiger Aspekt dabei ist die Erklärbarkeit und Verständlichkeit von Wissensgraphinhalten für Nutzer. In Anwendungen ist darüber hinaus die nutzerseitige Exploration von Wissensgraphen von besonderer Bedeutung. Suchen und Navigieren im Graph hilft dem Anwender, die Wissensinhalte und ihre Limitationen besser zu verstehen. Aufgrund der riesigen Menge an vorhandenen Entitäten und Fakten ist die Wissensgraphen-Exploration eine Herausforderung. Taxonomische Typsystem helfen dabei, sind jedoch für tiefergehende Exploration nicht ausreichend. Diese Dissertation adressiert die Herausforderungen der Wissensgraph-Verfeinerung und der Wissensgraph-Exploration durch algorithmische Inferenz über dem Wissensgraph. Sie erweitert logisches Schlussfolgern und kombiniert es mit anderen Methoden, insbesondere mit neuronalen Wissensgraph-Einbettungen und mit Text-Mining. Diese neuen Methoden liefern Ausgaben mit Erklärungen für Nutzer. Die Dissertation umfasst folgende Beiträge: Insbesondere leistet die Dissertation folgende Beiträge: • Zur Wissensgraph-Erweiterung präsentieren wir ExRuL, eine Methode zur Revision von Horn-Regeln durch Hinzufügen von Ausnahmebedingungen zum Rumpf der Regeln. Die erweiterten Regeln können neue Fakten inferieren und somit Lücken im Wissensgraphen schließen. Experimente mit großen Wissensgraphen zeigen, dass diese Methode Fehler in abgeleiteten Fakten erheblich reduziert und nutzerfreundliche Erklärungen liefert. • Mit RuLES stellen wir eine Methode zum Lernen von Regeln vor, die auf probabilistischen Repräsentationen für fehlende Fakten basiert. Das Verfahren erweitert iterativ die aus einem Wissensgraphen induzierten Regeln, indem es neuronale Wissensgraph-Einbettungen mit Informationen aus Textkorpora kombiniert. Bei der Regelgenerierung werden neue Metriken für die Regelqualität verwendet. Experimente zeigen, dass RuLES die Qualität der gelernten Regeln und ihrer Vorhersagen erheblich verbessert. • Zur Unterstützung der Wissensgraph-Validierung wird ExFaKT vorgestellt, ein Framework zur Konstruktion von Erklärungen für Faktkandidaten. Die Methode transformiert Kandidaten mit Hilfe von Regeln in eine Menge von Aussagen, die leichter zu finden und zu validieren oder widerlegen sind. Die Ausgabe von ExFaKT ist eine Menge semantischer Evidenzen für Faktkandidaten, die aus Textkorpora und dem Wissensgraph extrahiert werden. Experimente zeigen, dass die Transformationen die Ausbeute und Qualität der entdeckten Erklärungen deutlich verbessert. Die generierten unterstützen Erklärungen unterstütze sowohl die manuelle Wissensgraph- Validierung durch Kuratoren als auch die automatische Validierung. • Zur Unterstützung der Wissensgraph-Exploration wird ExCut vorgestellt, eine Methode zur Erzeugung von informativen Entitäts-Clustern mit Erklärungen unter Verwendung von Wissensgraph-Einbettungen und automatisch induzierten Regeln. Eine Cluster-Erklärung besteht aus einer Kombination von Relationen zwischen den Entitäten, die den Cluster identifizieren. ExCut verbessert gleichzeitig die Cluster- Qualität und die Cluster-Erklärbarkeit durch iteratives Verschränken des Lernens von Einbettungen und Regeln. Experimente zeigen, dass ExCut Cluster von hoher Qualität berechnet und dass die Cluster-Erklärungen für Nutzer informativ sind
    • …
    corecore