42,311 research outputs found

    StackInsights: Cognitive Learning for Hybrid Cloud Readiness

    Full text link
    Hybrid cloud is an integrated cloud computing environment utilizing a mix of public cloud, private cloud, and on-premise traditional IT infrastructures. Workload awareness, defined as a detailed full range understanding of each individual workload, is essential in implementing the hybrid cloud. While it is critical to perform an accurate analysis to determine which workloads are appropriate for on-premise deployment versus which workloads can be migrated to a cloud off-premise, the assessment is mainly performed by rule or policy based approaches. In this paper, we introduce StackInsights, a novel cognitive system to automatically analyze and predict the cloud readiness of workloads for an enterprise. Our system harnesses the critical metrics across the entire stack: 1) infrastructure metrics, 2) data relevance metrics, and 3) application taxonomy, to identify workloads that have characteristics of a) low sensitivity with respect to business security, criticality and compliance, and b) low response time requirements and access patterns. Since the capture of the data relevance metrics involves an intrusive and in-depth scanning of the content of storage objects, a machine learning model is applied to perform the business relevance classification by learning from the meta level metrics harnessed across stack. In contrast to traditional methods, StackInsights significantly reduces the total time for hybrid cloud readiness assessment by orders of magnitude

    Stocator: A High Performance Object Store Connector for Spark

    Full text link
    We present Stocator, a high performance object store connector for Apache Spark, that takes advantage of object store semantics. Previous connectors have assumed file system semantics, in particular, achieving fault tolerance and allowing speculative execution by creating temporary files to avoid interference between worker threads executing the same task and then renaming these files. Rename is not a native object store operation; not only is it not atomic, but it is implemented using a costly copy operation and a delete. Instead our connector leverages the inherent atomicity of object creation, and by avoiding the rename paradigm it greatly decreases the number of operations on the object store as well as enabling a much simpler approach to dealing with the eventually consistent semantics typical of object stores. We have implemented Stocator and shared it in open source. Performance testing shows that it is as much as 18 times faster for write intensive workloads and performs as much as 30 times fewer operations on the object store than the legacy Hadoop connectors, reducing costs both for the client and the object storage service provider

    Stochastic Database Cracking: Towards Robust Adaptive Indexing in Main-Memory Column-Stores

    Get PDF
    Modern business applications and scientific databases call for inherently dynamic data storage environments. Such environments are characterized by two challenging features: (a) they have little idle system time to devote on physical design; and (b) there is little, if any, a priori workload knowledge, while the query and data workload keeps changing dynamically. In such environments, traditional approaches to index building and maintenance cannot apply. Database cracking has been proposed as a solution that allows on-the-fly physical data reorganization, as a collateral effect of query processing. Cracking aims to continuously and automatically adapt indexes to the workload at hand, without human intervention. Indexes are built incrementally, adaptively, and on demand. Nevertheless, as we show, existing adaptive indexing methods fail to deliver workload-robustness; they perform much better with random workloads than with others. This frailty derives from the inelasticity with which these approaches interpret each query as a hint on how data should be stored. Current cracking schemes blindly reorganize the data within each query's range, even if that results into successive expensive operations with minimal indexing benefit. In this paper, we introduce stochastic cracking, a significantly more resilient approach to adaptive indexing. Stochastic cracking also uses each query as a hint on how to reorganize data, but not blindly so; it gains resilience and avoids performance bottlenecks by deliberately applying certain arbitrary choices in its decision-making. Thereby, we bring adaptive indexing forward to a mature formulation that confers the workload-robustness previous approaches lacked. Our extensive experimental study verifies that stochastic cracking maintains the desired properties of original database cracking while at the same time it performs well with diverse realistic workloads.Comment: VLDB201

    A Template for Implementing Fast Lock-free Trees Using HTM

    Full text link
    Algorithms that use hardware transactional memory (HTM) must provide a software-only fallback path to guarantee progress. The design of the fallback path can have a profound impact on performance. If the fallback path is allowed to run concurrently with hardware transactions, then hardware transactions must be instrumented, adding significant overhead. Otherwise, hardware transactions must wait for any processes on the fallback path, causing concurrency bottlenecks, or move to the fallback path. We introduce an approach that combines the best of both worlds. The key idea is to use three execution paths: an HTM fast path, an HTM middle path, and a software fallback path, such that the middle path can run concurrently with each of the other two. The fast path and fallback path do not run concurrently, so the fast path incurs no instrumentation overhead. Furthermore, fast path transactions can move to the middle path instead of waiting or moving to the software path. We demonstrate our approach by producing an accelerated version of the tree update template of Brown et al., which can be used to implement fast lock-free data structures based on down-trees. We used the accelerated template to implement two lock-free trees: a binary search tree (BST), and an (a,b)-tree (a generalization of a B-tree). Experiments show that, with 72 concurrent processes, our accelerated (a,b)-tree performs between 4.0x and 4.2x as many operations per second as an implementation obtained using the original tree update template
    corecore