2,875 research outputs found

    Power consumption prediction in cloud data center using machine learning

    Get PDF
    The flourishing development of the cloud computing paradigm provides several services in the industrial business world. Power consumption by cloud data centers is one of the crucial issues for service providers in the domain of cloud computing. Pursuant to the rapid technology enhancements in cloud environments and data centers augmentations, power utilization in data centers is expected to grow unabated. A diverse set of numerous connected devices, engaged with the ubiquitous cloud, results in unprecedented power utilization by the data centers, accompanied by increased carbon footprints. Nearly a million physical machines (PM) are running all over the data centers, along with (5 – 6) million virtual machines (VM). In the next five years, the power needs of this domain are expected to spiral up to 5% of global power production. The virtual machine power consumption reduction impacts the diminishing of the PM’s power, however further changing in power consumption of data center year by year, to aid the cloud vendors using prediction methods. The sudden fluctuation in power utilization will cause power outage in the cloud data centers. This paper aims to forecast the VM power consumption with the help of regressive predictive analysis, one of the Machine Learning (ML) techniques. The potency of this approach to make better predictions of future value, using Multi-layer Perceptron (MLP) regressor which provides 91% of accuracy during the prediction process

    Computing server power modeling in a data center: survey,taxonomy and performance evaluation

    Full text link
    Data centers are large scale, energy-hungry infrastructure serving the increasing computational demands as the world is becoming more connected in smart cities. The emergence of advanced technologies such as cloud-based services, internet of things (IoT) and big data analytics has augmented the growth of global data centers, leading to high energy consumption. This upsurge in energy consumption of the data centers not only incurs the issue of surging high cost (operational and maintenance) but also has an adverse effect on the environment. Dynamic power management in a data center environment requires the cognizance of the correlation between the system and hardware level performance counters and the power consumption. Power consumption modeling exhibits this correlation and is crucial in designing energy-efficient optimization strategies based on resource utilization. Several works in power modeling are proposed and used in the literature. However, these power models have been evaluated using different benchmarking applications, power measurement techniques and error calculation formula on different machines. In this work, we present a taxonomy and evaluation of 24 software-based power models using a unified environment, benchmarking applications, power measurement technique and error formula, with the aim of achieving an objective comparison. We use different servers architectures to assess the impact of heterogeneity on the models' comparison. The performance analysis of these models is elaborated in the paper

    A Hybrid Optimization Algorithm for Efficient Virtual Machine Migration and Task Scheduling Using a Cloud-Based Adaptive Multi-Agent Deep Deterministic Policy Gradient Technique

    Get PDF
    This To achieve optimal system performance in the quickly developing field of cloud computing, efficient resource management—which includes accurate job scheduling and optimized Virtual Machine (VM) migration—is essential. The Adaptive Multi-Agent System with Deep Deterministic Policy Gradient (AMS-DDPG) Algorithm is used in this study to propose a cutting-edge hybrid optimization algorithm for effective virtual machine migration and task scheduling. An sophisticated combination of the War Strategy Optimization (WSO) and Rat Swarm Optimizer (RSO) algorithms, the Iterative Concept of War and Rat Swarm (ICWRS) algorithm is the foundation of this technique. Notably, ICWRS optimizes the system with an amazing 93% accuracy, especially for load balancing, job scheduling, and virtual machine migration. The VM migration and task scheduling flexibility and efficiency are greatly improved by the AMS-DDPG technology, which uses a powerful combination of deterministic policy gradient and deep reinforcement learning. By assuring the best possible resource allocation, the Adaptive Multi-Agent System method enhances decision-making even more. Performance in cloud-based virtualized systems is significantly enhanced by our hybrid method, which combines deep learning and multi-agent coordination. Extensive tests that include a detailed comparison with conventional techniques verify the effectiveness of the suggested strategy. As a consequence, our hybrid optimization approach is successful. The findings show significant improvements in system efficiency, shorter job completion times, and optimum resource utilization. Cloud-based systems have unrealized potential for synergistic optimization, as shown by the integration of ICWRS inside the AMS-DDPG framework. Enabling a high-performing and sustainable cloud computing infrastructure that can adapt to the changing needs of modern computing paradigms is made possible by this strategic resource allocation, which is attained via careful computational utilization

    SGA Model for Prediction in Cloud Environment

    Get PDF
    With virtual information, cloud computing has made applications available to users everywhere. Efficient asset workload forecasting could help the cloud achieve maximum resource utilisation. The effective utilization of resources and the reduction of datacentres power both depend heavily on load forecasting. The allocation of resources and task scheduling issues in clouds and virtualized systems are significantly impacted by CPU utilisation forecast. A resource manager uses utilisation projection to distribute workload between physical nodes, improving resource consumption effectiveness. When performing a virtual machine distribution job, a good estimation of CPU utilization enables the migration of one or more virtual servers, preventing the overflow of the real machineries. In a cloud system, scalability and flexibility are crucial characteristics. Predicting workload and demands would aid in optimal resource utilisation in a cloud setting. To improve allocation of resources and the effectiveness of the cloud service, workload assessment and future workload forecasting could be performed. The creation of an appropriate statistical method has begun. In this study, a simulation approach and a genetic algorithm were used to forecast workloads. In comparison to the earlier techniques, it is anticipated to produce results that are superior by having a lower error rate and higher forecasting reliability. The suggested method is examined utilizing statistics from the Bit brains datacentres. The study then analyses, summarises, and suggests future study paths in cloud environments

    Adaptive prediction models for data center resources utilization estimation

    Get PDF
    Accurate estimation of data center resource utilization is a challenging task due to multi-tenant co-hosted applications having dynamic and time-varying workloads. Accurate estimation of future resources utilization helps in better job scheduling, workload placement, capacity planning, proactive auto-scaling, and load balancing. The inaccurate estimation leads to either under or over-provisioning of data center resources. Most existing estimation methods are based on a single model that often does not appropriately estimate different workload scenarios. To address these problems, we propose a novel method to adaptively and automatically identify the most appropriate model to accurately estimate data center resources utilization. The proposed approach trains a classifier based on statistical features of historical resources usage to decide the appropriate prediction model to use for given resource utilization observations collected during a specific time interval. We evaluated our approach on real datasets and compared the results with multiple baseline methods. The experimental evaluation shows that the proposed approach outperforms the state-of-the-art approaches and delivers 6% to 27% improved resource utilization estimation accuracy compared to baseline methods.This work is partially supported by the European Research Council (ERC) under the EU Horizon 2020 programme (GA 639595), the Spanish Ministry of Economy, Industry and Competitiveness (TIN2015-65316-P and IJCI2016-27485), the Generalitat de Catalunya (2014-SGR-1051), and NPRP grant # NPRP9-224-1-049 from the Qatar National Research Fund (a member of Qatar Foundation) and University of the Punjab, Pakistan.Peer ReviewedPostprint (published version

    Black-box modeling of nonlinear system using evolutionary neural NARX model

    Get PDF
    Nonlinear systems with uncertainty and disturbance are very difficult to model using mathematic approach. Therefore, a black-box modeling approach without any prior knowledge is necessary. There are some modeling approaches have been used to develop a black box model such as fuzzy logic, neural network, and evolution algorithms. In this paper, an evolutionary neural network by combining a neural network and a modified differential evolution algorithm is applied to model a nonlinear system. The feasibility and effectiveness of the proposed modeling are tested on a piezoelectric actuator SISO system and an experimental quadruple tank MIMO system

    Machine learning regression to boost scheduling performance in hyper-scale cloud-computing data centres

    Get PDF
    Data centres increase their size and complexity due to the increasing amount of heterogeneous work loads and patterns to be served. Such a mix of various purpose workloads makes the optimisation of resource management systems according to temporal or application-level patterns difficult. Data centre operators have developed multiple resource-management models to improve scheduling perfor mance in controlled scenarios. However, the constant evolution of the workloads makes the utilisation of only one resource-management model sub-optimal in some scenarios. In this work, we propose: (a) a machine learning regression model based on gradient boosting to pre dict the time a resource manager needs to schedule incoming jobs for a given period; and (b) a resource management model, Boost, that takes advantage of this regression model to predict the scheduling time of a catalogue of resource managers so that the most performant can be used for a time span. The benefits of the proposed resource-management model are analysed by comparing its scheduling performance KPIs to those provided by the two most popular resource-management models: two level, used by Apache Mesos, and shared-state, employed by Google Borg. Such gains are empirically eval uated by simulating a hyper-scale data centre that executes a realistic synthetically generated workload that follows real-world trace patternsMinisterio de Ciencia e Innovación RTI2018-098062-A-I0

    Cloud computing resource scheduling and a survey of its evolutionary approaches

    Get PDF
    A disruptive technology fundamentally transforming the way that computing services are delivered, cloud computing offers information and communication technology users a new dimension of convenience of resources, as services via the Internet. Because cloud provides a finite pool of virtualized on-demand resources, optimally scheduling them has become an essential and rewarding topic, where a trend of using Evolutionary Computation (EC) algorithms is emerging rapidly. Through analyzing the cloud computing architecture, this survey first presents taxonomy at two levels of scheduling cloud resources. It then paints a landscape of the scheduling problem and solutions. According to the taxonomy, a comprehensive survey of state-of-the-art approaches is presented systematically. Looking forward, challenges and potential future research directions are investigated and invited, including real-time scheduling, adaptive dynamic scheduling, large-scale scheduling, multiobjective scheduling, and distributed and parallel scheduling. At the dawn of Industry 4.0, cloud computing scheduling for cyber-physical integration with the presence of big data is also discussed. Research in this area is only in its infancy, but with the rapid fusion of information and data technology, more exciting and agenda-setting topics are likely to emerge on the horizon
    corecore