685 research outputs found

    Optimal scheduling algorithms for input-queued switches

    Get PDF

    Asymptotic optimality of maximum pressure policies in stochastic processing networks

    Full text link
    We consider a class of stochastic processing networks. Assume that the networks satisfy a complete resource pooling condition. We prove that each maximum pressure policy asymptotically minimizes the workload process in a stochastic processing network in heavy traffic. We also show that, under each quadratic holding cost structure, there is a maximum pressure policy that asymptotically minimizes the holding cost. A key to the optimality proofs is to prove a state space collapse result and a heavy traffic limit theorem for the network processes under a maximum pressure policy. We extend a framework of Bramson [Queueing Systems Theory Appl. 30 (1998) 89--148] and Williams [Queueing Systems Theory Appl. 30 (1998b) 5--25] from the multiclass queueing network setting to the stochastic processing network setting to prove the state space collapse result and the heavy traffic limit theorem. The extension can be adapted to other studies of stochastic processing networks.Comment: Published in at http://dx.doi.org/10.1214/08-AAP522 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Switched networks with maximum weight policies: Fluid approximation and multiplicative state space collapse

    Full text link
    We consider a queueing network in which there are constraints on which queues may be served simultaneously; such networks may be used to model input-queued switches and wireless networks. The scheduling policy for such a network specifies which queues to serve at any point in time. We consider a family of scheduling policies, related to the maximum-weight policy of Tassiulas and Ephremides [IEEE Trans. Automat. Control 37 (1992) 1936--1948], for single-hop and multihop networks. We specify a fluid model and show that fluid-scaled performance processes can be approximated by fluid model solutions. We study the behavior of fluid model solutions under critical load, and characterize invariant states as those states which solve a certain network-wide optimization problem. We use fluid model results to prove multiplicative state space collapse. A notable feature of our results is that they do not assume complete resource pooling.Comment: Published in at http://dx.doi.org/10.1214/11-AAP759 the Annals of Applied Probability (http://www.imstat.org/aap/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Many-Sources Large Deviations for Max-Weight Scheduling

    Get PDF
    In this paper, a many-sources large deviations principle (LDP) for the transient workload of a multi-queue single-server system is established where the service rates are chosen from a compact, convex and coordinate-convex rate region and where the service discipline is the max-weight policy. Under the assumption that the arrival processes satisfy a many-sources LDP, this is accomplished by employing Garcia's extended contraction principle that is applicable to quasi-continuous mappings. For the simplex rate-region, an LDP for the stationary workload is also established under the additional requirements that the scheduling policy be work-conserving and that the arrival processes satisfy certain mixing conditions. The LDP results can be used to calculate asymptotic buffer overflow probabilities accounting for the multiplexing gain, when the arrival process is an average of \emph{i.i.d.} processes. The rate function for the stationary workload is expressed in term of the rate functions of the finite-horizon workloads when the arrival processes have \emph{i.i.d.} increments.Comment: 44 page
    corecore