356 research outputs found

    Compiler-driven data layout transformations for network applications

    Get PDF
    This work approaches the little studied topic of compiler optimisations directed to network applications. It starts by investigating if there exist any fundamental differences between application domains that justify the development and tuning of domain-specific compiler optimisations. It shows an automated approach that is capable of identifying domain-specific workload characterisations and presenting them in a readily interpretable format based on decision trees. The generated workload profiles summarise key resource utilisation issues and enable compiler engineers to address the highlighted bottlenecks. By applying this methodology to data intensive network infrastructure application it shows that data organisation is the key obstacle to overcome in order to achieve high performance. It therefore proposes and evaluates three specialised data transformations (structure splitting, array regrouping, and software caching) against the industrial EEMBC networking benchmarks and real-world data sets. It also demonstrates on one hand that speedups of up to 2.62 can be achieved, but on the other that no single solution performs equally well across different network traffic scenarios. Hence, to address this issue, an adaptive software caching scheme for high frequency route lookup operations is introduced and its effectiveness evaluated one more time against EEMBC networking benchmarks and real-world data sets achieving speedups of up to 3.30 and 2.27. The results clearly demonstrate that adaptive data organisation schemes are necessary to ensure optimal performance under varying network loads. Finally this research addresses another issue introduced by data transformations such as array regrouping and software caching, i.e. the need for static analysis to allow efficient resource allocation. This thesis proposes a static code analyser that allows the automatic resource analysis of source code containing lists and tree structures. The tool applies a combination of amortised analysis and separation logic methodology to real code and is able to evaluate type and resource usage of existing data structures, which can be used to compute global resource consumption values for full data intensive network applications

    Tutorial: Stream processing optimizations

    Get PDF
    This tutorial starts with a survey of optimizations for streaming applications. The survey is organized as a catalog that introduces uniform terminology and a common categorization of optimizations across disciplines, such as data management, programming languages, and operating systems. After this survey, the tutorial continues with a deep-dive into the fission optimization, which automatically transforms streaming applications for data-parallelism. Fis-sion helps an application improve its throughput by taking advantage of multiple cores in a machine, or, in the case of a distributed streaming engine, multiple machines in a cluster. While the survey of optimizations covers a wide range of work from the literature, the in-depth discussion of ission relies more heavily on the presenters' own research and experience in the area. The tutorial concludes with a discussion of open research challenges in the field of stream processing optimizations. Copyright © 2013 ACM

    Neutral Networks of Real-World Programs and their Application to Automated Software Evolution

    Get PDF
    The existing software development ecosystem is the product of evolutionary forces, and consequently real-world software is amenable to improvement through automated evolutionary techniques. This dissertation presents empirical evidence that software is inherently robust to small randomized program transformations, or \u27mutations. Simple and general mutation operations are demonstrated that can be applied to software source code, compiled assembler code, or directly to binary executables. These mutations often generate variants of working programs that differ significantly from the original, yet remain fully functional. Applying successive mutations to the same software program uncovers large \u27neutral networks\u27 of fully functional variants of real-world software projects. These properties of \u27mutational robustness\u27 and the corresponding \u27neutral networks\u27 have been studied extensively in biology and are believed to be related to the capacity for unsupervised evolution and adaptation. As in biological systems, mutational robustness and neutral networks in software systems enable automated evolution. The dissertation presents several applications that leverage software neutral networks to automate common software development and maintenance tasks. Neutral networks are explored to generate diverse implementations of software for improving runtime security and for proactively repairing latent bugs. Next, a technique is introduced for automatically repairing bugs in the assembler and executables compiled from off-the-shelf software. As demonstration, a proprietary executable is manipulated to patch security vulnerabilities without access to source code or any aid from the software vendor. Finally, software neutral networks are leveraged to optimize complex nonfunctional runtime properties. This optimization technique is used to reduce the energy consumption of the popular PARSEC benchmark applications by 20% as compared to the best available public domain compiler optimizations. The applications presented herein apply evolutionary computation techniques to existing software using common software engineering tools. By enabling evolutionary techniques within the existing software development toolchain, this work is more likely to be of practical benefit to the developers and maintainers of real-world software systems

    ACOTES project: Advanced compiler technologies for embedded streaming

    Get PDF
    Streaming applications are built of data-driven, computational components, consuming and producing unbounded data streams. Streaming oriented systems have become dominant in a wide range of domains, including embedded applications and DSPs. However, programming efficiently for streaming architectures is a challenging task, having to carefully partition the computation and map it to processes in a way that best matches the underlying streaming architecture, taking into account the distributed resources (memory, processing, real-time requirements) and communication overheads (processing and delay). These challenges have led to a number of suggested solutions, whose goal is to improve the programmer’s productivity in developing applications that process massive streams of data on programmable, parallel embedded architectures. StreamIt is one such example. Another more recent approach is that developed by the ACOTES project (Advanced Compiler Technologies for Embedded Streaming). The ACOTES approach for streaming applications consists of compiler-assisted mapping of streaming tasks to highly parallel systems in order to maximize cost-effectiveness, both in terms of energy and in terms of design effort. The analysis and transformation techniques automate large parts of the partitioning and mapping process, based on the properties of the application domain, on the quantitative information about the target systems, and on programmer directives. This paper presents the outcomes of the ACOTES project, a 3-year collaborative work of industrial (NXP, ST, IBM, Silicon Hive, NOKIA) and academic (UPC, INRIA, MINES ParisTech) partners, and advocates the use of Advanced Compiler Technologies that we developed to support Embedded Streaming.Peer ReviewedPostprint (published version

    Performance Optimization With An Integrated View Of Compiler And Application Knowledge

    Get PDF
    Compiler optimization is a long-standing research field that enhances program performance with a set of rigorous code analyses and transformations. Traditional compiler optimization focuses on general programs or program structures without considering too much high-level application operations or data structure knowledge. In this thesis, we claim that an integrated view of the application and compiler is helpful to further improve program performance. Particularly, we study integrated optimization opportunities for three kinds of applications: irregular tree-based query processing systems such as B+ tree, security enhancement such as buffer overflow protection, and tensor/matrix-based linear algebra computation. The performance of B+ tree query processing is important for many applications, such as file systems and databases. Latch-free B+ tree query processing is efficient since the queries are processed in batches without locks. To avoid long latency, the batch size can not be very large. However, modern processors provide opportunities to process larger batches parallel with acceptable latency. From studying real-world data, we find that there are many redundant and unnecessary queries especially when the real-world data is highly skewed. We develop a query sequence transformation framework Qtrans to reduce the redundancies in queries by applying classic dataflow analysis to queries. To further confirm the effectiveness, we integrate Qtrans into an existing BSP-based B+ tree query processing system, PALM tree. The evaluations show that the throughput can be improved up to 16X. Heap overflows are still the most common vulnerabilities in C/C++ programs. Common approaches incur high overhead since it checks every memory access. By analyzing dozens of bugs, we find that all heap overflows are related to arrays. We only need to check array-related memory accesses. We propose Prober to efficiently detect and prevent heap overflows. It contains Prober-Static to identify the array-related allocations and Prober-Dynamic to protect objects at runtime. In this thesis, our contributions lie on the Prober-Static side. The key challenge is to correctly identify the array-related allocations. We propose a hybrid method. Some objects can be identified as array-related (or not) by static analysis. For the remaining ones, we instrument the basic allocation type size statically and then determine the real allocation size at runtime. The evaluations show Prober-Static is effective. Tensor algebra is widely used in many applications, such as machine learning and data analytics. Tensors representing real-world data are usually large and sparse. There are many sparse tensor storage formats, and the kernels are different with varied formats. These different kernels make performance optimization for sparse tensor algebra challenging. We propose a tensor algebra domain-specific language and a compiler to automatically generate kernels for sparse tensor algebra computations, called SPACe. This compiler supports a wide range of sparse tensor formats. To further improve the performance, we integrate the data reordering into SPACe to improve data locality. The evaluations show that the code generated by SPACe outperforms state-of-the-art sparse tensor algebra compilers

    Locality Enhancement and Dynamic Optimizations on Multi-Core and GPU

    Get PDF
    Enhancing the match between software executions and hardware features is key to computing efficiency. The match is a continuously evolving and challenging problem. This dissertation focuses on the development of programming system support for exploiting two key features of modern hardware development: the massive parallelism of emerging computational accelerators such as Graphic Processing Units (GPU), and the non-uniformity of cache sharing in modern multicore processors. They are respectively driven by the important role of accelerators in today\u27s general-purpose computing and the ultimate importance of memory performance. This dissertation particularly concentrates on optimizing control flows and memory references, at both compilation and execution time, to tap into the full potential of pure software solutions in taking advantage of the two key hardware features.;Conditional branches cause divergences in program control flows, which may result in serious performance degradation on massively data-parallel GPU architectures with Single Instruction Multiple Data (SIMD) parallelism. On such an architecture, control divergence may force computing units to stay idle for a substantial time, throttling system throughput by orders of magnitude. This dissertation provides an extensive exploration of the solution to this problem and presents program level transformations based upon two fundamental techniques --- thread relocation and data relocation. These two optimizations provide fundamental support for swapping jobs among threads so that the control flow paths of threads converge within every SIMD thread group.;In memory performance, this dissertation concentrates on two aspects: the influence of nonuniform sharing on multithreading applications, and the optimization of irregular memory references on GPUs. In shared cache multicore chips, interactions among threads are complicated due to the interplay of cache contention and synergistic prefetching. This dissertation presents the first systematic study on the influence of non-uniform shared cache on contemporary parallel programs, reveals the mismatch between the software development and underlying cache sharing hierarchies, and further demonstrates it by proposing and applying cache-sharing-aware data transformations that bring significant performance improvement. For the second aspect, the efficiency of GPU accelerators is sensitive to irregular memory references, which refer to the memory references whose access patterns remain unknown until execution time (e.g., A[P[i]]). The root causes of the irregular memory reference problem are similar to that of the control flow problem, while in a more general and complex form. I developed a framework, named G-Streamline, as a unified software solution to dynamic irregularities in GPU computing. It treats both types of irregularities at the same time in a holistic fashion, maximizing the whole-program performance by resolving conflicts among optimizations
    corecore