2,062 research outputs found

    Performance measurements of distributed simulation strategies

    Get PDF
    Journal ArticleA multiprocessor-based, distributed simulation testbed is described that facilitates controlled experimentation with distributed simulation algorithms. The performance of simulation strategies using deadlock avoidance and deadlock detection and recovery techniques are examined using various synthetic and actual workloads. The distributed simulators are compared with a uniprocessor-based event list implementation. Results of a series of experiments demonstrate that message population and the degree to which processes can look ahead in simulated time play critical roles in the performance of distributed simulators using these algorithms. An "avalanche" phenomenon was observed in the deadlock detection and recovery simulator, and was found to be a necessary condition for achieving good performance. The central server queueing model was also examined. The poor behavior of this test case that has been observed by others is reproduced in the testbed, and explained in terms of message population and lookahead. Based on these observations, a modification to the server process program is suggested that improves performance by as much as an order of magnitude when firstcome- first-serve (FCFS) servers are used. These results demonstrate that conservative distributed simulation algorithms using deadlock avoidance or detection and recovery techniques can provide significant speedups over sequential event list implementations for some workloads, even in the presence of only a moderate amount of parallelism and many feedback loops. However, a moderate to high degree of parallelism is not sufficient to guarantee good performance

    Staring into the abyss: An evaluation of concurrency control with one thousand cores

    Get PDF
    Computer architectures are moving towards an era dominated by many-core machines with dozens or even hundreds of cores on a single chip. This unprecedented level of on-chip parallelism introduces a new dimension to scalability that current database management systems (DBMSs) were not designed for. In particular, as the number of cores increases, the problem of concurrency control becomes extremely challenging. With hundreds of threads running in parallel, the complexity of coordinating competing accesses to data will likely diminish the gains from increased core counts. To better understand just how unprepared current DBMSs are for future CPU architectures, we performed an evaluation of concurrency control for on-line transaction processing (OLTP) workloads on many-core chips. We implemented seven concurrency control algorithms on a main-memory DBMS and using computer simulations scaled our system to 1024 cores. Our analysis shows that all algorithms fail to scale to this magnitude but for different reasons. In each case, we identify fundamental bottlenecks that are independent of the particular database implementation and argue that even state-of-the-art DBMSs suffer from these limitations. We conclude that rather than pursuing incremental solutions, many-core chips may require a completely redesigned DBMS architecture that is built from ground up and is tightly coupled with the hardware.Intel Corporation (Science and Technology Center for Big Data

    The Nornir run-time system for parallel programs using Kahn process networks on multi-core machines – A flexible alternative to MapReduce

    Get PDF
    Even though shared-memory concurrency is a paradigm frequently used for developing parallel applications on small- and middle-sized machines, experience has shown that it is hard to use. This is largely caused by synchronization primitives which are low-level, inherently non-deterministic, and, consequently, non-intuitive to use. In this paper, we present the Nornir run-time system. Nornir is comparable to well-known frameworks such as MapReduce and Dryad that are recognized for their efficiency and simplicity. Unlike these frameworks, Nornir also supports process structures containing branches and cycles. Nornir is based on the formalism of Kahn process networks, which is a shared-nothing, message-passing model of concurrency. We deem this model a simple and deterministic alternative to shared-memory concurrency. Experiments with real and synthetic benchmarks on up to 8 CPUs show that performance in most cases scales almost linearly with the number of CPUs, when not limited by data dependencies. We also show that the modeling flexibility allows Nornir to outperform its MapReduce counterparts using well-known benchmarks. This article is distributed under the terms of the Creative Commons Attribution Noncommercial License which permits any noncommercial use, distribution, and reproduction in any medium, provided the original author(s) and source are credited

    Avoid Deadlock Resource Allocation (ADRA) Model V VM-out-of-N PM: Avoid Deadlock Resource Allocation (ADRA) Model V VM-out-of-N PM

    Get PDF
    This paper presents an avoid deadlock resource allocation (ADRA) for model V VM-out-of-N PM since cloud computing is a new computing paradigm composed of grid computing, distributed computing and utility concepts. Cloud computing presents a different resource allocation paradigm than either grids or distributed systems. Cloud service providers dynamically scale virtualized computing resources as a service over the internet. Due to variable number of users and limited resources, cloud is prone to deadlock at very large scale. Resource allocation and the associated deadlock avoidance is problem originated in the design and the implementation of the distributed computing, grid computing. In this paper, a new concept of free space cloud is proposed to avoid deadlock by collecting available free resource from all allocated users. New algorithms are developed for allocating multiple resources to competing services running in virtual machines on a heterogeneous distributed platform.  An experiment is tested in CloudSim. The performance of resource pool manager is evaluated by using CloudSim and resource utilization and indicating good results

    Resource Management in Multi-Access Edge Computing (MEC)

    Get PDF
    This PhD thesis investigates the effective ways of managing the resources of a Multi-Access Edge Computing Platform (MEC) in 5th Generation Mobile Communication (5G) networks. The main characteristics of MEC include distributed nature, proximity to users, and high availability. Based on these key features, solutions have been proposed for effective resource management. In this research, two aspects of resource management in MEC have been addressed. They are the computational resource and the caching resource which corresponds to the services provided by the MEC. MEC is a new 5G enabling technology proposed to reduce latency by bringing cloud computing capability closer to end-user Internet of Things (IoT) and mobile devices. MEC would support latency-critical user applications such as driverless cars and e-health. These applications will depend on resources and services provided by the MEC. However, MEC has limited computational and storage resources compared to the cloud. Therefore, it is important to ensure a reliable MEC network communication during resource provisioning by eradicating the chances of deadlock. Deadlock may occur due to a huge number of devices contending for a limited amount of resources if adequate measures are not put in place. It is crucial to eradicate deadlock while scheduling and provisioning resources on MEC to achieve a highly reliable and readily available system to support latency-critical applications. In this research, a deadlock avoidance resource provisioning algorithm has been proposed for industrial IoT devices using MEC platforms to ensure higher reliability of network interactions. The proposed scheme incorporates Banker’s resource-request algorithm using Software Defined Networking (SDN) to reduce communication overhead. Simulation and experimental results have shown that system deadlock can be prevented by applying the proposed algorithm which ultimately leads to a more reliable network interaction between mobile stations and MEC platforms. Additionally, this research explores the use of MEC as a caching platform as it is proclaimed as a key technology for reducing service processing delays in 5G networks. Caching on MEC decreases service latency and improve data content access by allowing direct content delivery through the edge without fetching data from the remote server. Caching on MEC is also deemed as an effective approach that guarantees more reachability due to proximity to endusers. In this regard, a novel hybrid content caching algorithm has been proposed for MEC platforms to increase their caching efficiency. The proposed algorithm is a unification of a modified Belady’s algorithm and a distributed cooperative caching algorithm to improve data access while reducing latency. A polynomial fit algorithm with Lagrange interpolation is employed to predict future request references for Belady’s algorithm. Experimental results show that the proposed algorithm obtains 4% more cache hits due to its selective caching approach when compared with case study algorithms. Results also show that the use of a cooperative algorithm can improve the total cache hits up to 80%. Furthermore, this thesis has also explored another predictive caching scheme to further improve caching efficiency. The motivation was to investigate another predictive caching approach as an improvement to the formal. A Predictive Collaborative Replacement (PCR) caching framework has been proposed as a result which consists of three schemes. Each of the schemes addresses a particular problem. The proactive predictive scheme has been proposed to address the problem of continuous change in cache popularity trends. The collaborative scheme addresses the problem of cache redundancy in the collaborative space. Finally, the replacement scheme is a solution to evict cold cache blocks and increase hit ratio. Simulation experiment has shown that the replacement scheme achieves 3% more cache hits than existing replacement algorithms such as Least Recently Used, Multi Queue and Frequency-based replacement. PCR algorithm has been tested using a real dataset (MovieLens20M dataset) and compared with an existing contemporary predictive algorithm. Results show that PCR performs better with a 25% increase in hit ratio and a 10% CPU utilization overhead
    • …
    corecore