7,142 research outputs found

    Taming Energy Costs of Large Enterprise Systems Through Adaptive Provisioning

    Get PDF
    One of the most pressing concerns in modern datacenter management is the rising cost of operation. Therefore, reducing variable expense, such as energy cost, has become a number one priority. However, reducing energy cost in large distributed enterprise system is an open research topic. These systems are commonly subjected to highly volatile workload processes and characterized by complex performance dependencies. This paper explicitly addresses this challenge and presents a novel approach to Taming Energy Costs of Larger Enterprise Systems (Tecless). Our adaptive provisioning methodology combines a low-level technical perspective on distributed systems with a high-level treatment of workload processes. More concretely, Tecless fuses an empirical bottleneck detection model with a statistical workload prediction model. Our methodology forecasts the system load online, which enables on-demand infrastructure adaption while continuously guaranteeing quality of service. In our analysis we show that the prediction of future workload allows adaptive provisioning with a power saving potential of up 25 percent of the total energy cost

    SLA-Oriented Resource Provisioning for Cloud Computing: Challenges, Architecture, and Solutions

    Full text link
    Cloud computing systems promise to offer subscription-oriented, enterprise-quality computing services to users worldwide. With the increased demand for delivering services to a large number of users, they need to offer differentiated services to users and meet their quality expectations. Existing resource management systems in data centers are yet to support Service Level Agreement (SLA)-oriented resource allocation, and thus need to be enhanced to realize cloud computing and utility computing. In addition, no work has been done to collectively incorporate customer-driven service management, computational risk management, and autonomic resource management into a market-based resource management system to target the rapidly changing enterprise requirements of Cloud computing. This paper presents vision, challenges, and architectural elements of SLA-oriented resource management. The proposed architecture supports integration of marketbased provisioning policies and virtualisation technologies for flexible allocation of resources to applications. The performance results obtained from our working prototype system shows the feasibility and effectiveness of SLA-based resource provisioning in Clouds.Comment: 10 pages, 7 figures, Conference Keynote Paper: 2011 IEEE International Conference on Cloud and Service Computing (CSC 2011, IEEE Press, USA), Hong Kong, China, December 12-14, 201

    Computing server power modeling in a data center: survey,taxonomy and performance evaluation

    Full text link
    Data centers are large scale, energy-hungry infrastructure serving the increasing computational demands as the world is becoming more connected in smart cities. The emergence of advanced technologies such as cloud-based services, internet of things (IoT) and big data analytics has augmented the growth of global data centers, leading to high energy consumption. This upsurge in energy consumption of the data centers not only incurs the issue of surging high cost (operational and maintenance) but also has an adverse effect on the environment. Dynamic power management in a data center environment requires the cognizance of the correlation between the system and hardware level performance counters and the power consumption. Power consumption modeling exhibits this correlation and is crucial in designing energy-efficient optimization strategies based on resource utilization. Several works in power modeling are proposed and used in the literature. However, these power models have been evaluated using different benchmarking applications, power measurement techniques and error calculation formula on different machines. In this work, we present a taxonomy and evaluation of 24 software-based power models using a unified environment, benchmarking applications, power measurement technique and error formula, with the aim of achieving an objective comparison. We use different servers architectures to assess the impact of heterogeneity on the models' comparison. The performance analysis of these models is elaborated in the paper
    • …
    corecore