77,255 research outputs found

    Extreme Programming: Maestro Style

    Get PDF
    "Extreme Programming: Maestro Style" is the name of a computer programming methodology that has evolved as a custom version of a methodology, called extreme programming that has been practiced in the software industry since the late 1990s. The name of this version reflects its origin in the work of the Maestro team at NASA's Jet Propulsion Laboratory that develops software for Mars exploration missions. Extreme programming is oriented toward agile development of software resting on values of simplicity, communication, testing, and aggressiveness. Extreme programming involves use of methods of rapidly building and disseminating institutional knowledge among members of a computer-programming team to give all the members a shared view that matches the view of the customers for whom the software system is to be developed. Extreme programming includes frequent planning by programmers in collaboration with customers, continually examining and rewriting code in striving for the simplest workable software designs, a system metaphor (basically, an abstraction of the system that provides easy-to-remember software-naming conventions and insight into the architecture of the system), programmers working in pairs, adherence to a set of coding standards, collaboration of customers and programmers, frequent verbal communication, frequent releases of software in small increments of development, repeated testing of the developmental software by both programmers and customers, and continuous interaction between the team and the customers. The environment in which the Maestro team works requires the team to quickly adapt to changing needs of its customers. In addition, the team cannot afford to accept unnecessary development risk. Extreme programming enables the Maestro team to remain agile and provide high-quality software and service to its customers. However, several factors in the Maestro environment have made it necessary to modify some of the conventional extreme-programming practices. The single most influential of these factors is that continuous interaction between customers and programmers is not feasible

    Pair programming and the re-appropriation of individual tools for collaborative software development

    Get PDF
    Although pair programming is becoming more prevalent in software development, and a number of reports have been written about it [10] [13], few have addressed the manner in which pairing actually takes place [12]. Even fewer consider the methods used to manage issues such as role change or the communication of complex issues. This paper highlights the way resources designed for individuals are re-appropriated and augmented by pair programmers to facilitate collaboration. It also illustrates that pair verbalisations can augment the benefits of the collocated team, providing examples from ethnographic studies of pair programmers 'in the wild'

    Research and Education in Computational Science and Engineering

    Get PDF
    Over the past two decades the field of computational science and engineering (CSE) has penetrated both basic and applied research in academia, industry, and laboratories to advance discovery, optimize systems, support decision-makers, and educate the scientific and engineering workforce. Informed by centuries of theory and experiment, CSE performs computational experiments to answer questions that neither theory nor experiment alone is equipped to answer. CSE provides scientists and engineers of all persuasions with algorithmic inventions and software systems that transcend disciplines and scales. Carried on a wave of digital technology, CSE brings the power of parallelism to bear on troves of data. Mathematics-based advanced computing has become a prevalent means of discovery and innovation in essentially all areas of science, engineering, technology, and society; and the CSE community is at the core of this transformation. However, a combination of disruptive developments---including the architectural complexity of extreme-scale computing, the data revolution that engulfs the planet, and the specialization required to follow the applications to new frontiers---is redefining the scope and reach of the CSE endeavor. This report describes the rapid expansion of CSE and the challenges to sustaining its bold advances. The report also presents strategies and directions for CSE research and education for the next decade.Comment: Major revision, to appear in SIAM Revie

    Agile development for a multi-disciplinary bicycle stability test bench

    Get PDF
    Agile software development methods are used extensively in the software industry. This paper describes an argument to explain why these methods can be used within a multi-disciplinary project and provides a concrete description on how to implement such a method, using a case-study to support the rationale. The SOFIE (Intelligent Assisted Bicycle) project was created to develop mechatronic appliances to make bicycles more stable, i.e. safer. A bicycle stability test bench is created within this project and is used as the case study for this research. The relative complexity of the test bench development and partner structure within the SOFIE project has many similarities with large-scale complex projects found in industry. Thus it provides a good environment to research the application of Agile software methods to a multi-disciplinary project

    The future of computing beyond Moore's Law.

    Get PDF
    Moore's Law is a techno-economic model that has enabled the information technology industry to double the performance and functionality of digital electronics roughly every 2 years within a fixed cost, power and area. Advances in silicon lithography have enabled this exponential miniaturization of electronics, but, as transistors reach atomic scale and fabrication costs continue to rise, the classical technological driver that has underpinned Moore's Law for 50 years is failing and is anticipated to flatten by 2025. This article provides an updated view of what a post-exascale system will look like and the challenges ahead, based on our most recent understanding of technology roadmaps. It also discusses the tapering of historical improvements, and how it affects options available to continue scaling of successors to the first exascale machine. Lastly, this article covers the many different opportunities and strategies available to continue computing performance improvements in the absence of historical technology drivers. This article is part of a discussion meeting issue 'Numerical algorithms for high-performance computational science'

    Comparative Study on Agile software development methodologies

    Get PDF
    Today-s business environment is very much dynamic, and organisations are constantly changing their software requirements to adjust with new environment. They also demand for fast delivery of software products as well as for accepting changing requirements. In this aspect, traditional plan-driven developments fail to meet up these requirements. Though traditional software development methodologies, such as life cycle-based structured and object oriented approaches, continue to dominate the systems development few decades and much research has done in traditional methodologies, Agile software development brings its own set of novel challenges that must be addressed to satisfy the customer through early and continuous delivery of the valuable software. It is a set of software development methods based on iterative and incremental development process, where requirements and development evolve through collaboration between self-organizing, cross-functional teams that allows rapid delivery of high quality software to meet customer needs and also accommodate changes in the requirements. In this paper, we significantly identify and describe the major factors, that Agile development approach improves software development process to meet the rapid changing business environments. We also provide a brief comparison of agile development methodologies with traditional systems development methodologies, and discuss current state of adopting agile methodologies. We speculate that from the need to satisfy the customer through early and continuous delivery of the valuable software, Agile software development is emerged as an alternative to traditional plan-based software development methods. The purpose of this paper, is to provide an in-depth understanding, the major benefits of agile development approach to software development industry, as well as provide a comparison study report of ASDM over TSDM.Comment: 25 pages, 25 images, 86 references used, with authors biographie

    Unifying an Introduction to Artificial Intelligence Course through Machine Learning Laboratory Experiences

    Full text link
    This paper presents work on a collaborative project funded by the National Science Foundation that incorporates machine learning as a unifying theme to teach fundamental concepts typically covered in the introductory Artificial Intelligence courses. The project involves the development of an adaptable framework for the presentation of core AI topics. This is accomplished through the development, implementation, and testing of a suite of adaptable, hands-on laboratory projects that can be closely integrated into the AI course. Through the design and implementation of learning systems that enhance commonly-deployed applications, our model acknowledges that intelligent systems are best taught through their application to challenging problems. The goals of the project are to (1) enhance the student learning experience in the AI course, (2) increase student interest and motivation to learn AI by providing a framework for the presentation of the major AI topics that emphasizes the strong connection between AI and computer science and engineering, and (3) highlight the bridge that machine learning provides between AI technology and modern software engineering

    Lessons Learned from a Decade of Providing Interactive, On-Demand High Performance Computing to Scientists and Engineers

    Full text link
    For decades, the use of HPC systems was limited to those in the physical sciences who had mastered their domain in conjunction with a deep understanding of HPC architectures and algorithms. During these same decades, consumer computing device advances produced tablets and smartphones that allow millions of children to interactively develop and share code projects across the globe. As the HPC community faces the challenges associated with guiding researchers from disciplines using high productivity interactive tools to effective use of HPC systems, it seems appropriate to revisit the assumptions surrounding the necessary skills required for access to large computational systems. For over a decade, MIT Lincoln Laboratory has been supporting interactive, on-demand high performance computing by seamlessly integrating familiar high productivity tools to provide users with an increased number of design turns, rapid prototyping capability, and faster time to insight. In this paper, we discuss the lessons learned while supporting interactive, on-demand high performance computing from the perspectives of the users and the team supporting the users and the system. Building on these lessons, we present an overview of current needs and the technical solutions we are building to lower the barrier to entry for new users from the humanities, social, and biological sciences.Comment: 15 pages, 3 figures, First Workshop on Interactive High Performance Computing (WIHPC) 2018 held in conjunction with ISC High Performance 2018 in Frankfurt, German

    D4M 3.0: Extended Database and Language Capabilities

    Full text link
    The D4M tool was developed to address many of today's data needs. This tool is used by hundreds of researchers to perform complex analytics on unstructured data. Over the past few years, the D4M toolbox has evolved to support connectivity with a variety of new database engines, including SciDB. D4M-Graphulo provides the ability to do graph analytics in the Apache Accumulo database. Finally, an implementation using the Julia programming language is also now available. In this article, we describe some of our latest additions to the D4M toolbox and our upcoming D4M 3.0 release. We show through benchmarking and scaling results that we can achieve fast SciDB ingest using the D4M-SciDB connector, that using Graphulo can enable graph algorithms on scales that can be memory limited, and that the Julia implementation of D4M achieves comparable performance or exceeds that of the existing MATLAB(R) implementation.Comment: IEEE HPEC 201
    corecore