481 research outputs found

    Active Predicting Coding: Brain-Inspired Reinforcement Learning for Sparse Reward Robotic Control Problems

    Full text link
    In this article, we propose a backpropagation-free approach to robotic control through the neuro-cognitive computational framework of neural generative coding (NGC), designing an agent built completely from powerful predictive coding/processing circuits that facilitate dynamic, online learning from sparse rewards, embodying the principles of planning-as-inference. Concretely, we craft an adaptive agent system, which we call active predictive coding (ActPC), that balances an internally-generated epistemic signal (meant to encourage intelligent exploration) with an internally-generated instrumental signal (meant to encourage goal-seeking behavior) to ultimately learn how to control various simulated robotic systems as well as a complex robotic arm using a realistic robotics simulator, i.e., the Surreal Robotics Suite, for the block lifting task and can pick-and-place problems. Notably, our experimental results demonstrate that our proposed ActPC agent performs well in the face of sparse (extrinsic) reward signals and is competitive with or outperforms several powerful backprop-based RL approaches.Comment: Contains appendix with pseudocode and additional detail

    Choice-correlated activity fluctuations underlie learning of neuronal category representation

    Get PDF
    The ability to categorize stimuli into discrete behaviourally relevant groups is an essential cognitive function. To elucidate the neural mechanisms underlying categorization, we constructed a cortical circuit model that is capable of learning a motion categorization task through reward-dependent plasticity. Here we show that stable category representations develop in neurons intermediate to sensory and decision layers if they exhibit choice-correlated activity fluctuations (choice probability). In the model, choice probability and task-specific interneuronal correlations emerge from plasticity of top-down projections from decision neurons. Specific model predictions are confirmed by analysis of single-neuron activity from the monkey parietal cortex, which reveals a mixture of directional and categorical tuning, and a positive correlation between category selectivity and choice probability. Beyond demonstrating a circuit mechanism for categorization, the present work suggests a key role of plastic top-down feedback in simultaneously shaping both neural tuning and correlated neural variability

    Homeostatische Plastizität - algorithmische und klinische Konsequenzen

    Get PDF
    Plasticity supports the remarkable adaptability and robustness of cortical processing. It allows the brain to learn and remember patterns in the sensory world, to refine motor control, to predict and obtain reward, or to recover function after injury. Behind this great flexibility hide a range of plasticity mechanisms, affecting different aspects of neuronal communication. However, little is known about the precise computational roles of some of these mechanisms. Here, we show that the interaction between spike-timing dependent plasticity (STDP), intrinsic plasticity and synaptic scaling enables neurons to learn efficient representations of their inputs. In the context of reward-dependent learning, the same mechanisms allow a neural network to solve a working memory task. Moreover, although we make no any apriori assumptions on the encoding used for representing inputs, the network activity resembles that of brain regions known to be associated with working memory, suggesting that reward-dependent learning may be a central force in working memory development. Lastly, we investigated some of the clinical implications of synaptic scaling and showed that, paradoxically, there are situations in which the very mechanisms that normally are required to preserve the balance of the system, may act as a destabilizing factor and lead to seizures. Our model offers a novel explanation for the increased incidence of seizures following chronic inflammation.Das menschliche Gehirn ist in der Lage sich an dramatische Veränderungen der Umgebung anzupassen. Hinter der Anpassungsfähigkeit des Gehirns stecken verschiedenste ernmechanismen. Einige dieser Mechanismen sind bereits relativ gut erforscht, wahrend bei anderen noch kaum bekannt ist, welche Rolle sie innerhalb der Informationsverarbeitungsprozesse im Gehirn spielen. Hier, soll gezeigt werden, dass das Zusammenspiel von Spike-Timing Dependent Plasticity' (STDP) mit zwei weiteren Prozessen, Synaptic Scaling' und Intrinsic Plasticity' (IP), es Nervenzellen ermöglicht Information effizient zu kodieren. Die gleichen Mechanismen führen dazu, dass ein Netzwerk aus Neuronen in der Lage ist, ein Arbeitsgedächtnis' für vergangene Stimuli zu entwickeln. Durch die Kombination von belohnungsabhängigem STDP und homöostatischen Mechanismen lernt das Netzwerk, die Stimulus-Repräsentationen für mehrere Zeitschritte verfügbar zu halten. Obwohl in unserem Modell-Design keinerlei. Informationen über die bevorzugte Art der Kodierung enthalten sind, finden wir nach Ende des Trainings neuronale Repräsentationen, die denjenigen aus vielen Arbeitsgedächtnis-Experimenten gleichen. Unser Modell zeigt, dass solche Repräsentationen durch Lernen enstehen können und dass Reward-abhängige Prozesse eine zentrale Kraft bei der Entwicklung des Arbeitsgedächtnisses spielen können. Abschliessend werden klinische Konsequenzen einiger Lern-Prozesse untersucht. Wir konnten zeigen, dass der selbe Mechanismus, der normalerweise die Aktivität im Gehirn in Balance hält, in speziellen Situationen auch zu Destabilisierung führen und epileptische Anfälle auslösen kann. Das hier vorgestellte Modell liefert eine neuartige Erklärung zur Entstehung von epileptischen Anfällen bei chronischen Entzündungen

    Computing with Simulated and Cultured Neuronal Networks

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Memory capacity in the hippocampus

    Get PDF
    Neural assemblies in hippocampus encode positions. During rest, the hippocam- pus replays sequences of neural activity seen during awake behavior. This replay is linked to memory consolidation and mental exploration of the environment. Re- current networks can be used to model the replay of sequential activity. Multiple sequences can be stored in the synaptic connections. To achieve a high mem- ory capacity, recurrent networks require a pattern separation mechanism. Such a mechanism is global remapping, observed in place cell populations. A place cell fires at a particular position of an environment and is silent elsewhere. Multiple place cells usually cover an environment with their firing fields. Small changes in the environment or context of a behavioral task can cause global remapping, i.e. profound changes in place cell firing fields. Global remapping causes some cells to cease firing, other silent cells to gain a place field, and other place cells to move their firing field and change their peak firing rate. The effect is strong enough to make global remapping a viable pattern separation mechanism. We model two mechanisms that improve the memory capacity of recurrent net- works. The effect of inhibition on replay in a recurrent network is modeled using binary neurons and binary synapses. A mean field approximation is used to de- termine the optimal parameters for the inhibitory neuron population. Numerical simulations of the full model were carried out to verify the predictions of the mean field model. A second model analyzes a hypothesized global remapping mecha- nism, in which grid cell firing is used as feed forward input to place cells. Grid cells have multiple firing fields in the same environment, arranged in a hexagonal grid. Grid cells can be used in a model as feed forward inputs to place cells to produce place fields. In these grid-to-place cell models, shifts in the grid cell firing patterns cause remapping in the place cell population. We analyze the capacity of such a system to create sets of separated patterns, i.e. how many different spatial codes can be generated. The limiting factor are the synapses connecting grid cells to place cells. To assess their capacity, we produce different place codes in place and grid cell populations, by shuffling place field positions and shifting grid fields of grid cells. Then we use Hebbian learning to increase the synaptic weights be- tween grid and place cells for each set of grid and place code. The capacity limit is reached when synaptic interference makes it impossible to produce a place code with sufficient spatial acuity from grid cell firing. Additionally, it is desired to also maintain the place fields compact, or sparse if seen from a coding standpoint. Of course, as more environments are stored, the sparseness is lost. Interestingly, place cells lose the sparseness of their firing fields much earlier than their spatial acuity. For the sequence replay model we are able to increase capacity in a simulated recurrent network by including an inhibitory population. We show that even in this more complicated case, capacity is improved. We observe oscillations in the average activity of both excitatory and inhibitory neuron populations. The oscillations get stronger at the capacity limit. In addition, at the capacity limit, rather than observing a sudden failure of replay, we find sequences are replayed transiently for a couple of time steps before failing. Analyzing the remapping model, we find that, as we store more spatial codes in the synapses, first the sparseness of place fields is lost. Only later do we observe a decay in spatial acuity of the code. We found two ways to maintain sparse place fields while achieving a high capacity: inhibition between place cells, and partitioning the place cell population so that learning affects only a small fraction of them in each environment. We present scaling predictions that suggest that hundreds of thousands of spatial codes can be produced by this pattern separation mechanism. The effect inhibition has on the replay model is two-fold. Capacity is increased, and the graceful transition from full replay to failure allows for higher capacities when using short sequences. Additional mechanisms not explored in this model could be at work to concatenate these short sequences, or could perform more complex operations on them. The interplay of excitatory and inhibitory populations gives rise to oscillations, which are strongest at the capacity limit. The oscillation draws a picture of how a memory mechanism can cause hippocampal oscillations as observed in experiments. In the remapping model we showed that sparseness of place cell firing is constraining the capacity of this pattern separation mechanism. Grid codes outperform place codes regarding spatial acuity, as shown in Mathis et al. (2012). Our model shows that the grid-to-place transformation is not harnessing the full spatial information from the grid code in order to maintain sparse place fields. This suggests that the two codes are independent, and communication between the areas might be mostly for synchronization. High spatial acuity seems to be a specialization of the grid code, while the place code is more suitable for memory tasks. In a detailed model of hippocampal replay we show that feedback inhibition can increase the number of sequences that can be replayed. The effect of inhibition on capacity is determined using a meanfield model, and the results are verified with numerical simulations of the full network. Transient replay is found at the capacity limit, accompanied by oscillations that resemble sharp wave ripples in hippocampus. In a second model Hippocampal replay of neuronal activity is linked to memory consolidation and mental exploration. Furthermore, replay is a potential neural correlate of episodic memory. To model hippocampal sequence replay, recurrent neural networks are used. Memory capacity of such networks is of great interest to determine their biological feasibility. And additionally, any mechanism that improves capacity has explanatory power. We investigate two such mechanisms. The first mechanism to improve capacity is global, unspecific feedback inhibition for the recurrent network. In a simplified meanfield model we show that capacity is indeed improved. The second mechanism that increases memory capacity is pattern separation. In the spatial context of hippocampal place cell firing, global remapping is one way to achieve pattern separation. Changes in the environment or context of a task cause global remapping. During global remapping, place cell firing changes in unpredictable ways: cells shift their place fields, or fully cease firing, and formerly silent cells acquire place fields. Global remapping can be triggered by subtle changes in grid cells that give feed-forward inputs to hippocampal place cells. We investigate the capacity of the underlying synaptic connections, defined as the number of different environments that can be represented at a given spatial acuity. We find two essential conditions to achieve a high capacity and sparse place fields: inhibition between place cells, and partitioning the place cell population so that learning affects only a small fraction of them in each environments. We also find that sparsity of place fields is the constraining factor of the model rather than spatial acuity. Since the hippocampal place code is sparse, we conclude that the hippocampus does not fully harness the spatial information available in the grid code. The two codes of space might thus serve different purposes
    corecore