7,245 research outputs found

    Working and Assembly Modes of the Agile Eye

    Get PDF
    This paper deals with the in-depth kinematic analysis of a special spherical parallel wrist, called the Agile Eye. The Agile Eye is a three-legged spherical parallel robot with revolute joints in which all pairs of adjacent joint axes are orthogonal. Its most peculiar feature, demonstrated in this paper for the first time, is that its (orientation) workspace is unlimited and flawed only by six singularity curves (rather than surfaces). Furthermore, these curves correspond to self-motions of the mobile platform. This paper also demonstrates that, unlike for any other such complex spatial robots, the four solutions to the direct kinematics of the Agile Eye (assembly modes) have a simple geometric relationship with the eight solutions to the inverse kinematics (working modes)

    Kinematic Analysis and Trajectory Planning of the Orthoglide 5-axis

    Get PDF
    The subject of this paper is about the kinematic analysis and the trajectory planning of the Orthoglide 5-axis. The Orthoglide 5-axis a five degrees of freedom parallel kinematic machine developed at IRCCyN and is made up of a hybrid architecture, namely, a three degrees of freedom translational parallel manip-ulator mounted in series with a two degrees of freedom parallel spherical wrist. The simpler the kinematic modeling of the Or-thoglide 5-axis, the higher the maximum frequency of its control loop. Indeed, the control loop of a parallel kinematic machine should be computed with a high frequency, i.e., higher than 1.5 MHz, in order the manipulator to be able to reach high speed motions with a good accuracy. Accordingly, the direct and inverse kinematic models of the Orthoglide 5-axis, its inverse kine-matic Jacobian matrix and the first derivative of the latter with respect to time are expressed in this paper. It appears that the kinematic model of the manipulator under study can be written in a quadratic form due to the hybrid architecture of the Orthoglide 5-axis. As illustrative examples, the profiles of the actuated joint angles (lengths), velocities and accelerations that are used in the control loop of the robot are traced for two test trajectories.Comment: Appears in International Design Engineering Technical Conferences \& Computers and Information in Engineering Conference, Aug 2015, Boston, United States. 201

    Self-Motions of General 3-RPR Planar Parallel Robots

    Get PDF
    This paper studies the kinematic geometry of general 3-RPR planar parallel robots with actuated base joints. These robots, while largely overlooked, have simple direct kinematics and large singularity-free workspace. Furthermore, their kinematic geometry is the same as that of a newly developed parallel robot with SCARA-type motions. Starting from the direct and inverse kinematic model, the expressions for the singularity loci of 3-RPR planar parallel robots are determined. Then, the global behaviour at all singularities is geometrically described by studying the degeneracy of the direct kinematic model. Special cases of self-motions are then examined and the degree of freedom gained in such special configurations is kinematically interpreted. Finally, a practical example is discussed and experimental validations performed on an actual robot prototype are presented

    A Pair of Measures of Rotational Error for Axisymmetric Robot End-Effectors

    Get PDF
    International audienceThis paper deals with the problem of representing the rotational error of spatial robots with three orientational degrees of freedom (DOF). Typically, the errors on each of three Euler angles defining the orientation of an end-effector are analysed separately. However, this is wrong since an accuracy measure should depend only on the "distance" between the nominal pose and the actual one, and not on the choice of reference frame in which these are represented. Several bi-invariant metrics for rotational error exist but are single-parameter and, by definition, disregard the shape of the robot end-effector. Yet, robot end-effectors are typically axisymmetric. Therefore, we propose a two-parameter measure of rotational errors that is better suited for such robot end-effectors

    Lightweight design and encoderless control of a miniature direct drive linear delta robot

    Get PDF
    This paper presents the design, integration and experimental validation of a miniature light-weight delta robot targeted to be used for a variety of applications including the pick-place operations, high speed precise positioning and haptic implementations. The improvements brought by the new design contain; the use of a novel light-weight joint type replacing the conventional and heavy bearing structures and realization of encoderless position measurement algorithm based on hall effect sensor outputs of direct drive linear motors. The description of mechanical, electrical and software based improvements are followed by the derivation of a sliding mode controller to handle tracking of planar closed curves represented by elliptic fourier descriptors (EFDs). The new robot is tested in experiments and the validity of the improvements are verified for practical implementation

    Parallel manipulators: practical applications and kinematic design criteria. Towards the modular reconfigurable robots

    Get PDF
    Post-PrintModern robotic manipulators play an essential role in industry, developing several tasks in an easy way, enhancing the accuracy of the final product and reducing the executing time. Also they can be found in other fields as aerospace industry, several medical applications, gaming industry, and so on. In particular, the parallel manipulators have acquired a great relevance in the last years. Indeed, many research activities and projects deal with the study and develop-ment of this type of robots. Nevertheless, usually, a bilateral communication between industry and research does not exist, even among the different existing research areas. This causes a lack of knowledge regarding works that have been carried out, the ones that are under devel-opment and the possible future investigations. Hence, once a specific field of knowledge has acquired a certain level of maturity, it is convenient to reflect its current state of the art. In this sense, the authors of this paper present a review of the different fields in which parallel ma-nipulators have a significant participation, and also the most active research topics in the anal-ysis and design of these robots. Besides, several contributions of the authors to this field are cited.The authors wish to acknowledge the financial support received from the Spanish Government through the "Ministerio de EconomĂ­a y Competitividad" (Project DPI2015-67626-P (MINECO/FEDER, UE)), the financial support from the Uni-versity of the Basque Country (UPV/EHU) under the program UFI 11/29 and the support to the research group, through the project with ref. IT949-16, given by the "Departamento de EducaciĂłn, PolĂ­tica LingĂĽĂ­stica y Cultura" of the Regional Government of the Basque Country

    Fundamentals of Earth Observation Policy: Examples for German and European Missions

    Get PDF
    Several European countries have developed their national high resolution earth observation systems. Some of them are operated in close cooperation with industrial partners, others are dual-use missions earmarked to fulfil the needs of national security. In addition, the European Space Agency and the European Commission have initiated the Global Monitoring for Environment and Security (GMES) project. Therein, a fleet of satellites (SENTINELs) will deliver data for European wide information services, augmented by data from national and non-European earth observation systems. This new scenario needs clear guidance and regulations. Besides the principles for operations of earth observation missions – as set out in UN principles on earth observation – the operators of very high resolution missions require clear governmental acts which international users can be served and which data might be restricted in distribution. For national science and the SENTINEL-missions, a policy for free and open access is being developed to guarantee a maximum use of the data. Exemplified on the German national missions and the European GMES scenario, data policies and regulations for existing and new earth observation missions will be explained
    • …
    corecore