3,675 research outputs found

    A Semantic IoT Early Warning System for Natural Environment Crisis Management

    Get PDF
    This work was supported in part by the European FP7 Funded Project TRIDEC under Grant 258723, the other project partners in helping to deliver the complete project Syste, in particular, GFZ, and the German Research Centre for Geosciences, Potsdam, Germany. The work of R. Tao was supported by the Queen Mary University of London for a Ph.D. studentship

    A Semantic loT Early Warning System for Natural Environment Crisis Management

    Get PDF
    An early warning system (EWS) is a core type of data driven Internet of Things (IoTs) system used for environment disaster risk and effect management. The potential benefits of using a semantic-type EWS include easier sensor and data source plug-and-play, simpler, richer, and more dynamic metadata-driven data analysis and easier service interoperability and orchestration. The challenges faced during practical deployments of semantic EWSs are the need for scalable time-sensitive data exchange and processing (especially involving heterogeneous data sources) and the need for resilience to changing ICT resource constraints in crisis zones. We present a novel IoT EWS system framework that addresses these challenges, based upon a multisemantic representation model.We use lightweight semantics for metadata to enhance rich sensor data acquisition.We use heavyweight semantics for top level W3CWeb Ontology Language ontology models describing multileveled knowledge-bases and semantically driven decision support and workflow orchestration. This approach is validated through determining both system related metrics and a case study involving an advanced prototype system of the semantic EWS, integrated with a reployed EWS infrastructure

    Developing and operating time critical applications in clouds: the state of the art and the SWITCH approach

    Get PDF
    Cloud environments can provide virtualized, elastic, controllable and high quality on-demand services for supporting complex distributed applications. However, the engineering methods and software tools used for developing, deploying and executing classical time critical applications do not, as yet, account for the programmability and controllability provided by clouds, and so time critical applications cannot yet benefit from the full potential of cloud technology. This paper reviews the state of the art of technologies involved in developing time critical cloud applications, and presents the approach of a recently funded EU H2020 project: the Software Workbench for Interactive, Time Critical and Highly self-adaptive cloud applications (SWITCH). SWITCH aims to improve the existing development and execution model of time critical applications by introducing a novel conceptual model—the application-infrastructure co-programming and control model—in which application QoS and QoE, together with the programmability and controllability of cloud environments, is included in the complete application lifecycle

    Coordination Of Hierarchical Command And Control Services

    Get PDF
    The purpose of this program is to show emerging information technologies can significantly improve key areas of tactical operations, resulting in the conversion of software developed under the ATO to existing battlefield systems. One such key area is Information Dissemination and Management (ID&M). The key software that will be developed under the ID&M portion requires a collection of agent-based software services that will collaborate during tactical mission planning and execution

    Toward Customizable Multi-tenant SaaS Applications

    Get PDF
    abstract: Nowadays, Computing is so pervasive that it has become indeed the 5th utility (after water, electricity, gas, telephony) as Leonard Kleinrock once envisioned. Evolved from utility computing, cloud computing has emerged as a computing infrastructure that enables rapid delivery of computing resources as a utility in a dynamically scalable, virtualized manner. However, the current industrial cloud computing implementations promote segregation among different cloud providers, which leads to user lockdown because of prohibitive migration cost. On the other hand, Service-Orented Computing (SOC) including service-oriented architecture (SOA) and Web Services (WS) promote standardization and openness with its enabling standards and communication protocols. This thesis proposes a Service-Oriented Cloud Computing Architecture by combining the best attributes of the two paradigms to promote an open, interoperable environment for cloud computing development. Mutil-tenancy SaaS applicantions built on top of SOCCA have more flexibility and are not locked down by a certain platform. Tenants residing on a multi-tenant application appear to be the sole owner of the application and not aware of the existence of others. A multi-tenant SaaS application accommodates each tenant’s unique requirements by allowing tenant-level customization. A complex SaaS application that supports hundreds, even thousands of tenants could have hundreds of customization points with each of them providing multiple options, and this could result in a huge number of ways to customize the application. This dissertation also proposes innovative customization approaches, which studies similar tenants’ customization choices and each individual users behaviors, then provides guided semi-automated customization process for the future tenants. A semi-automated customization process could enable tenants to quickly implement the customization that best suits their business needs.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Hospital Leadership in Support of Digital Transformation

    Get PDF
    Evolving customer expectations and the rapid introduction of new information technologies are influencing business operations, and businesses need to transform themselves with new operating models to remain competitive. The traditional top-down administrative leadership approach is not sufficiently flexible to support the innovation needed to sustain customer engagement and retention. There is a need for both an enabling leadership that supports the exploration of innovative ideas quickly for viability and an adaptive leadership to transition the ideas that show promise into the current business model or a variation of this model to sustain growth. We define digital leadership as a strategic process that collectively uses these three leadership styles to create an ecosystem that advances a culture of innovation within organizations. This leadership process uses four foundational platforms to support business transformations: (1) An innovation platform to empower teams to explore ideas that create value using digital transformations; (2) An agile system and business platform to quickly design and deliver IT implementations; (3) A learning platform to support reflective discourse that leads to organizational capacity building; and (4) An adoption platform to decide when and what implementations get transitioned to the regular business for sustaining competitiveness. We will illustrate how digital leadership is used to transform the culture of a community hospital through several IS implementations recognized by external peers for their innovativeness. Available at: https://aisel.aisnet.org/pajais/vol10/iss3/1

    ATM automation: guidance on human technology integration

    Get PDF
    © Civil Aviation Authority 2016Human interaction with technology and automation is a key area of interest to industry and safety regulators alike. In February 2014, a joint CAA/industry workshop considered perspectives on present and future implementation of advanced automated systems. The conclusion was that whilst no additional regulation was necessary, guidance material for industry and regulators was required. Development of this guidance document was completed in 2015 by a working group consisting of CAA, UK industry, academia and industry associations (see Appendix B). This enabled a collaborative approach to be taken, and for regulatory, industry, and workforce perspectives to be collectively considered and addressed. The processes used in developing this guidance included: review of the themes identified from the February 2014 CAA/industry workshop1; review of academic papers, textbooks on automation, incidents and accidents involving automation; identification of key safety issues associated with automated systems; analysis of current and emerging ATM regulatory requirements and guidance material; presentation of emerging findings for critical review at UK and European aviation safety conferences. In December 2015, a workshop of senior management from project partner organisations reviewed the findings and proposals. EASA were briefed on the project before its commencement, and Eurocontrol contributed through membership of the Working Group.Final Published versio

    DigiMon Final Report

    Get PDF
    "DigiMon Final Report” summarizes the ACT DigiMon project. The overall objective of the DigiMon project was to “accelerate the implementation of CCS by developing and demonstrating an affordable, flexible, societally embedded and smart Digital Monitoring early-warning system”, for monitoring any CO2 storage reservoir and subsurface barrier system, receiving CO2 from fossil fuel power plants, oil refineries, process plants and other industries.DigiMon Final ReportpublishedVersio
    • …
    corecore