6,896 research outputs found

    Resource-aware business process management : analysis and support

    Get PDF

    Data-Driven Process Mining Framework for Risk Management in Construction Projects

    Get PDF
    Construction Projects are exposed to numerous risks due to their complex and uncertain nature, threatening the realization of the project objectives. However, Risk Management (RM) is a less efficient realm in the industry than other knowledge areas given the manual and time-consuming nature of its processes and reliance on experience-based subjective judgments. This research proposes a Process Mining-based framework for detecting, monitoring, and analysing risks, improving the RM processes using evidence-based event logs, such as Risk Registers and Change-Logs within previous projects' documents. Process Mining (PM) is a data- driven methodology, well established in other industries, that benefits from Artificial Intelligence(AI) to identify trends and complex patterns among event logs. It performs well while intaking large amounts of data and predicting future outputs based on historical data. Therefore, this research proposes a Bayesian Network (BN)-based Process Mining framework for graphical representation of the RM processes, intaking the conditional dependence structure between Risk variables, and continuous and automated risk identification and management. A systematic literature review on RM, PM, and AI forms the framework theoretical basis and delineates the integration areas for practical implementation. The proposed framework is applied to a small database of 20 projects as the case study, the scope of which can be tailored to the enterprise requirements. It contributes to creating a holistic theoretical foundation and practical workflow applicable to construction projects and filling the knowledge gap in inefficient and discrete conventional RM methods, which ignore the interdependencies between risk variables and assess each risk isolated

    A Literature Review on Predictive Monitoring of Business Processes

    Get PDF
    Oleme läbi vaadanud mitmesuguseid ennetava jälgimise meetodeid äriprotsessides. Prognoositavate seirete eesmärk on aidata ettevõtetel oma eesmärke saavutada, aidata neil valida õige ärimudel, prognoosida tulemusi ja aega ning muuta äriprotsessid riskantsemaks. Antud väitekirjaga oleme hoolikalt kogunud ja üksikasjalikult läbi vaadanud selle väitekirja teemal oleva kirjanduse. Kirjandusuuringu tulemustest ja tähelepanekutest lähtuvalt oleme hoolikalt kavandanud ennetava jälgimisraamistiku. Raamistik on juhendiks ettevõtetele ja teadlastele, teadustöötajatele, kes uurivad selles valdkonnas ja ettevõtetele, kes soovivad neid tehnikaid oma valdkonnas rakendada.The goal of predictive monitoring is to help the business achieve their goals, help them take the right business path, predict outcomes, estimate delivery time, and make business processes risk aware. In this thesis, we have carefully collected and reviewed in detail all literature which falls in this process mining category. The objective of the thesis is to design a Predictive Monitoring Framework and classify the different predictive monitoring techniques. The framework acts as a guide for researchers and businesses. Researchers who are investigating in this field and businesses who want to apply these techniques in their respective field

    Process mining : conformance and extension

    Get PDF
    Today’s business processes are realized by a complex sequence of tasks that are performed throughout an organization, often involving people from different departments and multiple IT systems. For example, an insurance company has a process to handle insurance claims for their clients, and a hospital has processes to diagnose and treat patients. Because there are many activities performed by different people throughout the organization, there is a lack of transparency about how exactly these processes are executed. However, understanding the process reality (the "as is" process) is the first necessary step to save cost, increase quality, or ensure compliance. The field of process mining aims to assist in creating process transparency by automatically analyzing processes based on existing IT data. Most processes are supported by IT systems nowadays. For example, Enterprise Resource Planning (ERP) systems such as SAP log all transaction information, and Customer Relationship Management (CRM) systems are used to keep track of all interactions with customers. Process mining techniques use these low-level log data (so-called event logs) to automatically generate process maps that visualize the process reality from different perspectives. For example, it is possible to automatically create process models that describe the causal dependencies between activities in the process. So far, process mining research has mostly focused on the discovery aspect (i.e., the extraction of models from event logs). This dissertation broadens the field of process mining to include the aspect of conformance and extension. Conformance aims at the detection of deviations from documented procedures by comparing the real process (as recorded in the event log) with an existing model that describes the assumed or intended process. Conformance is relevant for two reasons: 1. Most organizations document their processes in some form. For example, process models are created manually to understand and improve the process, comply with regulations, or for certification purposes. In the presence of existing models, it is often more important to point out the deviations from these existing models than to discover completely new models. Discrepancies emerge because business processes change, or because the models did not accurately reflect the real process in the first place (due to the manual and subjective creation of these models). If the existing models do not correspond to the actual processes, then they have little value. 2. Automatically discovered process models typically do not completely "fit" the event logs from which they were created. These discrepancies are due to noise and/or limitations of the used discovery techniques. Furthermore, in the context of complex and diverse process environments the discovered models often need to be simplified to obtain useful insights. Therefore, it is crucial to be able to check how much a discovered process model actually represents the real process. Conformance techniques can be used to quantify the representativeness of a mined model before drawing further conclusions. They thus constitute an important quality measurement to effectively use process discovery techniques in a practical setting. Once one is confident in the quality of an existing or discovered model, extension aims at the enrichment of these models by the integration of additional characteristics such as time, cost, or resource utilization. By extracting aditional information from an event log and projecting it onto an existing model, bottlenecks can be highlighted and correlations with other process perspectives can be identified. Such an integrated view on the process is needed to understand root causes for potential problems and actually make process improvements. Furthermore, extension techniques can be used to create integrated simulation models from event logs that resemble the real process more closely than manually created simulation models. In Part II of this thesis, we provide a comprehensive framework for the conformance checking of process models. First, we identify the evaluation dimensions fitness, decision/generalization, and structure as the relevant conformance dimensions.We develop several Petri-net based approaches to measure conformance in these dimensions and describe five case studies in which we successfully applied these conformance checking techniques to real and artificial examples. Furthermore, we provide a detailed literature review of related conformance measurement approaches (Chapter 4). Then, we study existing model evaluation approaches from the field of data mining. We develop three data mining-inspired evaluation approaches for discovered process models, one based on Cross Validation (CV), one based on the Minimal Description Length (MDL) principle, and one using methods based on Hidden Markov Models (HMMs). We conclude that process model evaluation faces similar yet different challenges compared to traditional data mining. Additional challenges emerge from the sequential nature of the data and the higher-level process models, which include concurrent dynamic behavior (Chapter 5). Finally, we point out current shortcomings and identify general challenges for conformance checking techniques. These challenges relate to the applicability of the conformance metric, the metric quality, and the bridging of different process modeling languages. We develop a flexible, language-independent conformance checking approach that provides a starting point to effectively address these challenges (Chapter 6). In Part III, we develop a concrete extension approach, provide a general model for process extensions, and apply our approach for the creation of simulation models. First, we develop a Petri-net based decision mining approach that aims at the discovery of decision rules at process choice points based on data attributes in the event log. While we leverage classification techniques from the data mining domain to actually infer the rules, we identify the challenges that relate to the initial formulation of the learning problem from a process perspective. We develop a simple approach to partially overcome these challenges, and we apply it in a case study (Chapter 7). Then, we develop a general model for process extensions to create integrated models including process, data, time, and resource perspective.We develop a concrete representation based on Coloured Petri-nets (CPNs) to implement and deploy this model for simulation purposes (Chapter 8). Finally, we evaluate the quality of automatically discovered simulation models in two case studies and extend our approach to allow for operational decision making by incorporating the current process state as a non-empty starting point in the simulation (Chapter 9). Chapter 10 concludes this thesis with a detailed summary of the contributions and a list of limitations and future challenges. The work presented in this dissertation is supported and accompanied by concrete implementations, which have been integrated in the ProM and ProMimport frameworks. Appendix A provides a comprehensive overview about the functionality of the developed software. The results presented in this dissertation have been presented in more than twenty peer-reviewed scientific publications, including several high-quality journals

    Contextual and Ethical Issues with Predictive Process Monitoring

    Get PDF
    This thesis addresses contextual and ethical issues in the predictive process monitoring framework and several related issues. Regarding contextual issues, even though the importance of case, process, social and external contextual factors in the predictive business process monitoring framework has been acknowledged, few studies have incorporated these into the framework or measured their impact. Regarding ethical issues, we examine how human agents make decisions with the assistance of process monitoring tools and provide recommendation to facilitate the design of tools which enables a user to recognise the presence of algorithmic discrimination in the predictions provided. First, a systematic literature review is undertaken to identify existing studies which adopt a clustering-based remaining-time predictive process monitoring approach, and a comparative analysis is performed to compare and benchmark the output of the identified studies using 5 real-life event logs. This curates the studies which have adopted this important family of predictive process monitoring approaches but also facilitates comparison as the various studies utilised different datasets, parameters, and evaluation measures. Subsequently, the next two chapter investigate the impact of social and spatial contextual factors in the predictive process monitoring framework. Social factors encompass the way humans and automated agents interact within a particular organisation to execute process-related activities. The impact of social contextual features in the predictive process monitoring framework is investigated utilising a survival analysis approach. The proposed approach is benchmarked against existing approaches using five real-life event logs and outperforms these approaches. Spatial context (a type of external context) is also shown to improve the predictive power of business process monitoring models. The penultimate chapter examines the nature of the relationship between workload (a process contextual factor) and stress (a social contextual factor) by utilising a simulation-based approach to investigate the diffusion of workload-induced stress in the workplace. In conclusion, the thesis examines how users utilise predictive process monitoring (and AI) tools to make decisions. Whilst these tools have delivered real benefits in terms of improved service quality and reduction in processing time, among others, they have also raised issues which have real-world ethical implications such as recommending different credit outcomes for individuals who have an identical financial profile but different characteristics (e.g., gender, race). This chapter amalgamates the literature in the fields of ethical decision making and explainable AI and proposes, but does not attempt to validate empirically, propositions and belief statements based on the synthesis of the existing literature, observation, logic, and empirical analogy

    A Hybrid Process Mining Framework for Automated Simulation Modelling for Healthcare

    Get PDF
    Advances in data and process mining algorithms combined with the availability of sophisticated information systems have created an encouraging environment for innovations in simulation modelling. Researchers have investigated the integration between such algorithms and business process modelling to facilitate the automation of building simulation models. These endeavors have resulted in a prototype termed Auto Simulation Model Builder (ASMB) for DES models. However, this prototype has limitations that undermine applying it on complex systems. This paper presents an extension of the ASMB framework previously developed by authors adopted for healthcare systems. The proposed framework offers a comprehensive solution for resources handling to support complex decision-making processes around hospital staff planning. The framework also introduces a machine learning real-time data-driven prediction approach for system performance using advanced activity blocks for the auto-generated model, based on live-streams of patient data. This prediction can be useful for both single and multiple healthcare units management
    corecore