18,000 research outputs found

    Context-Aware Information Retrieval for Enhanced Situation Awareness

    No full text
    In the coalition forces, users are increasingly challenged with the issues of information overload and correlation of information from heterogeneous sources. Users might need different pieces of information, ranging from information about a single building, to the resolution strategy of a global conflict. Sometimes, the time, location and past history of information access can also shape the information needs of users. Information systems need to help users pull together data from disparate sources according to their expressed needs (as represented by system queries), as well as less specific criteria. Information consumers have varying roles, tasks/missions, goals and agendas, knowledge and background, and personal preferences. These factors can be used to shape both the execution of user queries and the form in which retrieved information is packaged. However, full automation of this daunting information aggregation and customization task is not possible with existing approaches. In this paper we present an infrastructure for context-aware information retrieval to enhance situation awareness. The infrastructure provides each user with a customized, mission-oriented system that gives access to the right information from heterogeneous sources in the context of a particular task, plan and/or mission. The approach lays on five intertwined fundamental concepts, namely Workflow, Context, Ontology, Profile and Information Aggregation. The exploitation of this knowledge, using appropriate domain ontologies, will make it feasible to provide contextual assistance in various ways to the work performed according to a user’s taskrelevant information requirements. This paper formalizes these concepts and their interrelationships

    A novel approach to collaborative product development in the medical-equipment industry

    Get PDF
    In this study, we summarise the requirements for collaborative product development based on our investigation of the differences in the resources and tools that are needed for the various stages of collaborative product development and the needs of system users during these various stages. We proposed a user-oriented approach of collaborative product development for medical equipment and designed a collaborative product development system with the required functionalities to satisfy different areas according to their roles and workflow. The system we developed can drastically simplify the original complex and dispersed process of product development for intelligent medical equipment, thereby allowing the project team to develop new medical-equipment products and promote interactions among the research and development staff, clinical specialists, and the test participants successfully, thereby resulting in a user-oriented collaborative product development process

    Adapting e-learning and learning services for people with disabilities

    Get PDF
    Providing learning materials and support services that are adapted to the needs of individuals has the potential to enable learners to obtain maximal benefit from university level studies. This paper describes EU4ALL project which has been exploring how to present customized learning materials and services for people with disabilities. A number of the technical components of the EU4ALL framework are described. This is followed with a brief description of prototype implementations. This is then followed by a discussion of a number of research directions that may enhance the adaptability, usability and accessibility of information and support systems can be used and consumed by a diverse user population

    Veni Vidi Vici, A Three-Phase Scenario For Parameter Space Analysis in Image Analysis and Visualization

    Full text link
    Automatic analysis of the enormous sets of images is a critical task in life sciences. This faces many challenges such as: algorithms are highly parameterized, significant human input is intertwined, and lacking a standard meta-visualization approach. This paper proposes an alternative iterative approach for optimizing input parameters, saving time by minimizing the user involvement, and allowing for understanding the workflow of algorithms and discovering new ones. The main focus is on developing an interactive visualization technique that enables users to analyze the relationships between sampled input parameters and corresponding output. This technique is implemented as a prototype called Veni Vidi Vici, or "I came, I saw, I conquered." This strategy is inspired by the mathematical formulas of numbering computable functions and is developed atop ImageJ, a scientific image processing program. A case study is presented to investigate the proposed framework. Finally, the paper explores some potential future issues in the application of the proposed approach in parameter space analysis in visualization
    • …
    corecore