1,575 research outputs found

    Words with many palindrome pair factors

    Get PDF
    Motivated by a conjecture of Frid, Puzynina, and Zamboni, we investigate infinite words with the property that for infinitely many n, every length-n factor is a product of two palindromes. We show that every Sturmian word has this property, but this does not characterize the class of Sturmian words. We also show that the Thue-Morse word does not have this property. We investigate infinite words with the maximal number of distinct palindrome pair factors and characterize the binary words that are not palindrome pairs but have the property that every proper factor is a palindrome pair."The first author is supported by an NSERC USRA, the second by an NSERC Discovery Grant."http://www.combinatorics.org/ojs/index.php/eljc/article/view/v22i4p2

    On the Combinatorics of Palindromes and Antipalindromes

    Full text link
    We prove a number of results on the structure and enumeration of palindromes and antipalindromes. In particular, we study conjugates of palindromes, palindromic pairs, rich words, and the counterparts of these notions for antipalindromes.Comment: 13 pages/ submitted to DLT 201

    On Generating Binary Words Palindromically

    Full text link
    We regard a finite word u=u1u2unu=u_1u_2\cdots u_n up to word isomorphism as an equivalence relation on {1,2,,n}\{1,2,\ldots, n\} where ii is equivalent to jj if and only if xi=xj.x_i=x_j. Some finite words (in particular all binary words) are generated by "{\it palindromic}" relations of the form kj+ikk\sim j+i-k for some choice of 1ijn1\leq i\leq j\leq n and k{i,i+1,,j}.k\in \{i,i+1,\ldots,j\}. That is to say, some finite words uu are uniquely determined up to word isomorphism by the position and length of some of its palindromic factors. In this paper we study the function μ(u)\mu(u) defined as the least number of palindromic relations required to generate u.u. We show that every aperiodic infinite word must contain a factor uu with μ(u)3,\mu(u)\geq 3, and that some infinite words xx have the property that μ(u)3\mu(u)\leq 3 for each factor uu of x.x. We obtain a complete classification of such words on a binary alphabet (which includes the well known class of Sturmian words). In contrast for the Thue-Morse word, we show that the function μ\mu is unbounded

    Palindromic complexity of trees

    Full text link
    We consider finite trees with edges labeled by letters on a finite alphabet Σ\varSigma. Each pair of nodes defines a unique labeled path whose trace is a word of the free monoid Σ\varSigma^*. The set of all such words defines the language of the tree. In this paper, we investigate the palindromic complexity of trees and provide hints for an upper bound on the number of distinct palindromes in the language of a tree.Comment: Submitted to the conference DLT201

    Enumeration and Structure of Trapezoidal Words

    Full text link
    Trapezoidal words are words having at most n+1n+1 distinct factors of length nn for every n0n\ge 0. They therefore encompass finite Sturmian words. We give combinatorial characterizations of trapezoidal words and exhibit a formula for their enumeration. We then separate trapezoidal words into two disjoint classes: open and closed. A trapezoidal word is closed if it has a factor that occurs only as a prefix and as a suffix; otherwise it is open. We investigate open and closed trapezoidal words, in relation with their special factors. We prove that Sturmian palindromes are closed trapezoidal words and that a closed trapezoidal word is a Sturmian palindrome if and only if its longest repeated prefix is a palindrome. We also define a new class of words, \emph{semicentral words}, and show that they are characterized by the property that they can be written as uxyuuxyu, for a central word uu and two different letters x,yx,y. Finally, we investigate the prefixes of the Fibonacci word with respect to the property of being open or closed trapezoidal words, and show that the sequence of open and closed prefixes of the Fibonacci word follows the Fibonacci sequence.Comment: Accepted for publication in Theoretical Computer Scienc

    On Theta-palindromic Richness

    Get PDF
    In this paper we study generalization of the reversal mapping realized by an arbitrary involutory antimorphism Θ\Theta. It generalizes the notion of a palindrome into a Θ\Theta-palindrome -- a word invariant under Θ\Theta. For languages closed under Θ\Theta we give the relation between Θ\Theta-palindromic complexity and factor complexity. We generalize the notion of richness to Θ\Theta-richness and we prove analogous characterizations of words that are Θ\Theta-rich, especially in the case of set of factors invariant under Θ\Theta. A criterion for Θ\Theta-richness of Θ\Theta-episturmian words is given together with other examples of Θ\Theta-rich words.Comment: 14 page

    Proof of Brlek-Reutenauer conjecture

    Full text link
    Brlek and Reutenauer conjectured that any infinite word u with language closed under reversal satisfies the equality 2D(u) = \sum_{n=0}^{\infty}T_u(n) in which D(u) denotes the defect of u and T_u(n) denotes C_u(n+1)-C_u(n) +2 - P_U(n+1) - P_u(n), where C_u and P_u are the factor and palindromic complexity of u, respectively. This conjecture was verified for periodic words by Brlek and Reutenauer themselves. Using their results for periodic words, we have recently proved the conjecture for uniformly recurrent words. In the present article we prove the conjecture in its general version by a new method without exploiting the result for periodic words.Comment: 9 page

    Extensions of rich words

    Full text link
    In [X. Droubay et al, Episturmian words and some constructions of de Luca and Rauzy, Theoret. Comput. Sci. 255 (2001)], it was proved that every word w has at most |w|+1 many distinct palindromic factors, including the empty word. The unified study of words which achieve this limit was initiated in [A. Glen et al, Palindromic richness, Eur. Jour. of Comb. 30 (2009)]. They called these words rich (in palindromes). This article contains several results about rich words and especially extending them. We say that a rich word w can be extended richly with a word u if wu is rich. Some notions are also made about the infinite defect of a word, the number of rich words of length n and two-dimensional rich words.Comment: 19 pages, 3 figure
    corecore