546,721 research outputs found

    Word graphs: The third set

    Get PDF
    This is the third paper in a series of natural language processing in term of knowledge graphs. A word is a basic unit in natural language processing. This is why we study word graphs. Word graphs were already built for prepositions and adwords (including adjectives, adverbs and Chinese quantity words) in two other papers. In this paper, we propose the concept of the logic word and classify logic words into groups in terms of semantics and the way they are used in describing reasoning processes. A start is made with the building of the lexicon of logic words in terms of knowledge graphs

    A characterization of horizontal visibility graphs and combinatorics on words

    Get PDF
    An Horizontal Visibility Graph (for short, HVG) is defined in association with an ordered set of non-negative reals. HVGs realize a methodology in the analysis of time series, their degree distribution being a good discriminator between randomness and chaos [B. Luque, et al., Phys. Rev. E 80 (2009), 046103]. We prove that a graph is an HVG if and only if outerplanar and has a Hamilton path. Therefore, an HVG is a noncrossing graph, as defined in algebraic combinatorics [P. Flajolet and M. Noy, Discrete Math., 204 (1999) 203-229]. Our characterization of HVGs implies a linear time recognition algorithm. Treating ordered sets as words, we characterize subfamilies of HVGs highlighting various connections with combinatorial statistics and introducing the notion of a visible pair. With this technique we determine asymptotically the average number of edges of HVGs.Comment: 6 page

    A combinatorial analysis of Severi degrees

    Full text link
    Based on results by Brugall\'e and Mikhalkin, Fomin and Mikhalkin give formulas for computing classical Severi degrees Nd,δN^{d, \delta} using long-edge graphs. In 2012, Block, Colley and Kennedy considered the logarithmic version of a special function associated to long-edge graphs appeared in Fomin-Mikhalkin's formula, and conjectured it to be linear. They have since proved their conjecture. At the same time, motivated by their conjecture, we consider a special multivariate function associated to long-edge graphs that generalizes their function. The main result of this paper is that the multivariate function we define is always linear. A special case of our result gives an independent proof of Block-Colley-Kennedy's conjecture. The first application of our linearity result is that by applying it to classical Severi degrees, we recover quadraticity of Qd,δQ^{d, \delta} and a bound δ\delta for the threshold of polynomiality of Nd,δ.N^{d, \delta}. Next, in joint work with Osserman, we apply the linearity result to a special family of toric surfaces and obtain universal polynomial results having connections to the G\"ottsche-Yau-Zaslow formula. As a result, we provide combinatorial formulas for the two unidentified power series B1(q)B_1(q) and B2(q)B_2(q) appearing in the G\"ottsche-Yau-Zaslow formula. The proof of our linearity result is completely combinatorial. We define τ\tau-graphs which generalize long-edge graphs, and a closely related family of combinatorial objects we call (τ,n)(\tau, n)-words. By introducing height functions and a concept of irreducibility, we describe ways to decompose certain families of (τ,n)(\tau, n)-words into irreducible words, which leads to the desired results.Comment: 38 pages, 1 figure, 1 table. Major revision: generalized main results in previous version. The old results only applies to classical Severi degrees. The current version also applies to Severi degrees coming from special families of toric surface
    • …
    corecore