28,854 research outputs found

    Solving the word problem in real time

    Get PDF
    The paper is devoted to the study of groups whose word problem can be solved by a Turing machine which operates in real time. A recent result of the first author for word hyperbolic groups is extended to prove that under certain conditions the generalised Dehn algorithms of Cannon, Goodman and Shapiro, which clearly run in linear time, can be programmed on real-time Turing machines. It follows that word-hyperbolic groups, finitely generated nilpotent groups and geometrically finite hyperbolic groups all have real-time word problems

    Generic-case complexity, decision problems in group theory and random walks

    Get PDF
    We give a precise definition of ``generic-case complexity'' and show that for a very large class of finitely generated groups the classical decision problems of group theory - the word, conjugacy and membership problems - all have linear-time generic-case complexity. We prove such theorems by using the theory of random walks on regular graphs.Comment: Revised versio

    Knapsack Problems in Groups

    Full text link
    We generalize the classical knapsack and subset sum problems to arbitrary groups and study the computational complexity of these new problems. We show that these problems, as well as the bounded submonoid membership problem, are P-time decidable in hyperbolic groups and give various examples of finitely presented groups where the subset sum problem is NP-complete.Comment: 28 pages, 12 figure

    A strong geometric hyperbolicity property for directed graphs and monoids

    Get PDF
    We introduce and study a strong "thin triangle"' condition for directed graphs, which generalises the usual notion of hyperbolicity for a metric space. We prove that finitely generated left cancellative monoids whose right Cayley graphs satisfy this condition must be finitely presented with polynomial Dehn functions, and hence word problems in NP. Under the additional assumption of right cancellativity (or in some cases the weaker condition of bounded indegree), they also admit algorithms for more fundamentally semigroup-theoretic decision problems such as Green's relations L, R, J, D and the corresponding pre-orders. In contrast, we exhibit a right cancellative (but not left cancellative) finitely generated monoid (in fact, an infinite class of them) whose Cayley graph is a essentially a tree (hence hyperbolic in our sense and probably any reasonable sense), but which is not even recursively presentable. This seems to be strong evidence that no geometric notion of hyperbolicity will be strong enough to yield much information about finitely generated monoids in absolute generality.Comment: Exposition improved. Results unchange
    corecore