8,648 research outputs found

    Word vs. Class-Based Word Sense Disambiguation

    Get PDF
    As empirically demonstrated by the Word Sense Disambiguation (WSD) tasks of the last SensEval/SemEval exercises, assigning the appropriate meaning to words in context has resisted all attempts to be successfully addressed. Many authors argue that one possible reason could be the use of inappropriate sets of word meanings. In particular, WordNet has been used as a de-facto standard repository of word meanings in most of these tasks. Thus, instead of using the word senses defined in WordNet, some approaches have derived semantic classes representing groups of word senses. However, the meanings represented by WordNet have been only used for WSD at a very fine-grained sense level or at a very coarse-grained semantic class level (also called SuperSenses). We suspect that an appropriate level of abstraction could be on between both levels. The contributions of this paper are manifold. First, we propose a simple method to automatically derive semantic classes at intermediate levels of abstraction covering all nominal and verbal WordNet meanings. Second, we empirically demonstrate that our automatically derived semantic classes outperform classical approaches based on word senses and more coarse-grained sense groupings. Third, we also demonstrate that our supervised WSD system benefits from using these new semantic classes as additional semantic features while reducing the amount of training examples. Finally, we also demonstrate the robustness of our supervised semantic class-based WSD system when tested on out of domain corpus.This work has been partially supported by the NewsReader project (ICT-2011-316404), the Spanish project SKaTer (TIN2012-38584-C06-02)

    Natural language understanding: instructions for (Present and Future) use

    Get PDF
    In this paper I look at Natural Language Understanding, an area of Natural Language Processing aimed at making sense of text, through the lens of a visionary future: what do we expect a machine should be able to understand? and what are the key dimensions that require the attention of researchers to make this dream come true

    One Homonym per Translation

    Full text link
    The study of homonymy is vital to resolving fundamental problems in lexical semantics. In this paper, we propose four hypotheses that characterize the unique behavior of homonyms in the context of translations, discourses, collocations, and sense clusters. We present a new annotated homonym resource that allows us to test our hypotheses on existing WSD resources. The results of the experiments provide strong empirical evidence for the hypotheses. This study represents a step towards a computational method for distinguishing between homonymy and polysemy, and constructing a definitive inventory of coarse-grained senses.Comment: 8 pages, including reference

    Grouping Synonyms by Definitions

    Get PDF
    We present a method for grouping the synonyms of a lemma according to its dictionary senses. The senses are defined by a large machine readable dictionary for French, the TLFi (Tr\'esor de la langue fran\c{c}aise informatis\'e) and the synonyms are given by 5 synonym dictionaries (also for French). To evaluate the proposed method, we manually constructed a gold standard where for each (word, definition) pair and given the set of synonyms defined for that word by the 5 synonym dictionaries, 4 lexicographers specified the set of synonyms they judge adequate. While inter-annotator agreement ranges on that task from 67% to at best 88% depending on the annotator pair and on the synonym dictionary being considered, the automatic procedure we propose scores a precision of 67% and a recall of 71%. The proposed method is compared with related work namely, word sense disambiguation, synonym lexicon acquisition and WordNet construction
    • …
    corecore