294 research outputs found

    Finding predominant word senses in untagged text

    Get PDF
    In word sense disambiguation (WSD), the heuristic of choosing the most common sense is extremely powerful because the distribution of the senses of a word is often skewed. The problem with using the predominant, or first sense heuristic, aside from the fact that it does not take surrounding context into account, is that it assumes some quantity of handtagged data. Whilst there are a few hand-tagged corpora available for some languages, one would expect the frequency distribution of the senses of words, particularly topical words, to depend on the genre and domain of the text under consideration. We present work on the use of a thesaurus acquired from raw textual corpora and the WordNet similarity package to find predominant noun senses automatically. The acquired predominant senses give a precision of 64% on the nouns of the SENSEVAL- 2 English all-words task. This is a very promising result given that our method does not require any hand-tagged text, such as SemCor. Furthermore, we demonstrate that our method discovers appropriate predominant senses for words from two domainspecific corpora

    The interaction of knowledge sources in word sense disambiguation

    Get PDF
    Word sense disambiguation (WSD) is a computational linguistics task likely to benefit from the tradition of combining different knowledge sources in artificial in telligence research. An important step in the exploration of this hypothesis is to determine which linguistic knowledge sources are most useful and whether their combination leads to improved results. We present a sense tagger which uses several knowledge sources. Tested accuracy exceeds 94% on our evaluation corpus.Our system attempts to disambiguate all content words in running text rather than limiting itself to treating a restricted vocabulary of words. It is argued that this approach is more likely to assist the creation of practical systems

    EXPLOITING TAGGED AND UNTAGGED CORPORA FOR WORD SENSE DISAMBIGUATION

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Improving Statistical Language Model Performance with Automatically Generated Word Hierarchies

    Full text link
    An automatic word classification system has been designed which processes word unigram and bigram frequency statistics extracted from a corpus of natural language utterances. The system implements a binary top-down form of word clustering which employs an average class mutual information metric. Resulting classifications are hierarchical, allowing variable class granularity. Words are represented as structural tags --- unique nn-bit numbers the most significant bit-patterns of which incorporate class information. Access to a structural tag immediately provides access to all classification levels for the corresponding word. The classification system has successfully revealed some of the structure of English, from the phonemic to the semantic level. The system has been compared --- directly and indirectly --- with other recent word classification systems. Class based interpolated language models have been constructed to exploit the extra information supplied by the classifications and some experiments have shown that the new models improve model performance.Comment: 17 Page Paper. Self-extracting PostScript Fil

    Disambiguation of biomedical text using diverse sources of information

    Get PDF
    Background: Like text in other domains, biomedical documents contain a range of terms with more than one possible meaning. These ambiguities form a significant obstacle to the automatic processing of biomedical texts. Previous approaches to resolving this problem have made use of various sources of information including linguistic features of the context in which the ambiguous term is used and domain-specific resources, such as UMLS. Materials and methods: We compare various sources of information including ones which have been previously used and a novel one: MeSH terms. Evaluation is carried out using a standard test set (the NLM-WSD corpus). Results: The best performance is obtained using a combination of linguistic features and MeSH terms. Performance of our system exceeds previously published results for systems evaluated using the same data set. Conclusion: Disambiguation of biomedical terms benefits from the use of information from a variety of sources. In particular, MeSH terms have proved to be useful and should be used if available
    corecore