1,472 research outputs found

    Investigations into the value of labeled and unlabeled data in biomedical entity recognition and word sense disambiguation

    Get PDF
    Human annotations, especially in highly technical domains, are expensive and time consuming togather, and can also be erroneous. As a result, we never have sufficiently accurate data to train andevaluate supervised methods. In this thesis, we address this problem by taking a semi-supervised approach to biomedical namedentity recognition (NER), and by proposing an inventory-independent evaluation framework for supervised and unsupervised word sense disambiguation. Our contributions are as follows: We introduce a novel graph-based semi-supervised approach to named entity recognition(NER) and exploit pre-trained contextualized word embeddings in several biomedical NER tasks. We propose a new evaluation framework for word sense disambiguation that permits a fair comparison between supervised methods trained on different sense inventories as well as unsupervised methods without a fixed sense inventory

    Semi-supervised learning for all-words WSD using self-learning and fine-tuning

    Get PDF

    A Machine learning approach to POS tagging

    Get PDF
    We have applied inductive learning of statistical decision trees and relaxation labelling to the Natural Language Processing (NLP) task of morphosyntactic disambiguation (Part Of Speech Tagging). The learning process is supervised and obtains a language model oriented to resolve POS ambiguities. This model consists of a set of statistical decision trees expressing distribution of tags and words in some relevant contexts. The acquired language models are complete enough to be directly used as sets of POS disambiguation rules, and include more complex contextual information than simple collections of n-grams usually used in statistical taggers. We have implemented a quite simple and fast tagger that has been tested and evaluated on the Wall Street Journal (WSJ) corpus with a remarkable accuracy. However, better results can be obtained by translating the trees into rules to feed a flexible relaxation labelling based tagger. In this direction we describe a tagger which is able to use information of any kind (n-grams, automatically acquired constraints, linguistically motivated manually written constraints, etc.), and in particular to incorporate the machine learned decision trees. Simultaneously, we address the problem of tagging when only small training material is available, which is crucial in any process of constructing, from scratch, an annotated corpus. We show that quite high accuracy can be achieved with our system in this situation.Postprint (published version

    EXPLOITING TAGGED AND UNTAGGED CORPORA FOR WORD SENSE DISAMBIGUATION

    Get PDF
    Ph.DDOCTOR OF PHILOSOPH

    Transductive Visual Verb Sense Disambiguation

    Get PDF
    Verb Sense Disambiguation is a well-known task in NLP, the aim is to find the correct sense of a verb in a sentence. Recently, this problem has been extended in a multimodal scenario, by exploiting both textual and visual features of ambiguous verbs leading to a new problem, the Visual Verb Sense Disambiguation (VVSD). Here, the sense of a verb is assigned considering the content of an image paired with it rather than a sentence in which the verb appears. Annotating a dataset for this task is more complex than textual disambiguation, because assigning the correct sense to a pair of requires both non-trivial linguistic and visual skills. In this work, differently from the literature, the VVSD task will be performed in a transductive semi-supervised learning (SSL) setting, in which only a small amount of labeled information is required, reducing tremendously the need for annotated data. The disambiguation process is based on a graph-based label propagation method which takes into account mono or multimodal representations for pairs. Experiments have been carried out on the recently published dataset VerSe, the only available dataset for this task. The achieved results outperform the current state-of-the-art by a large margin while using only a small fraction of labeled samples per sens
    corecore